Nuprl Lemma : l_subset_nil_left_true
∀[T:Type]. ∀[L:T List].  uiff(l_subset(T;[];L);True)
Proof
Definitions occuring in Statement : 
l_subset: l_subset(T;as;bs)
, 
nil: []
, 
list: T List
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
true: True
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
true: True
, 
prop: ℙ
, 
l_subset: l_subset(T;as;bs)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
Lemmas referenced : 
l_subset_wf, 
nil_wf, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
btrue_neq_bfalse, 
l_member_wf, 
true_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
independent_pairFormation, 
introduction, 
cut, 
natural_numberEquality, 
sqequalRule, 
sqequalHypSubstitution, 
axiomEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
rename, 
lambdaFormation, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    uiff(l\_subset(T;[];L);True)
Date html generated:
2016_05_14-AM-07_53_44
Last ObjectModification:
2015_12_26-PM-04_47_45
Theory : list_1
Home
Index