Nuprl Lemma : l_subset_nil_left_true

[T:Type]. ∀[L:T List].  uiff(l_subset(T;[];L);True)


Proof




Definitions occuring in Statement :  l_subset: l_subset(T;as;bs) nil: [] list: List uiff: uiff(P;Q) uall: [x:A]. B[x] true: True universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T true: True prop: l_subset: l_subset(T;as;bs) all: x:A. B[x] implies:  Q not: ¬A false: False
Lemmas referenced :  l_subset_wf nil_wf null_nil_lemma btrue_wf member-implies-null-eq-bfalse btrue_neq_bfalse l_member_wf true_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation independent_pairFormation introduction cut natural_numberEquality sqequalRule sqequalHypSubstitution axiomEquality equalityTransitivity hypothesis equalitySymmetry lemma_by_obid isectElimination thin hypothesisEquality rename lambdaFormation independent_isectElimination independent_functionElimination voidElimination universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    uiff(l\_subset(T;[];L);True)



Date html generated: 2016_05_14-AM-07_53_44
Last ObjectModification: 2015_12_26-PM-04_47_45

Theory : list_1


Home Index