Nuprl Lemma : l_subset_nil_right
∀[T:Type]. ∀[L:T List].  (l_subset(T;L;[]) 
⇐⇒ L = [] ∈ (T List))
Proof
Definitions occuring in Statement : 
l_subset: l_subset(T;as;bs)
, 
nil: []
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
l_subset: l_subset(T;as;bs)
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
not: ¬A
, 
false: False
, 
or: P ∨ Q
, 
cons: [a / b]
Lemmas referenced : 
all_wf, 
l_member_wf, 
nil_wf, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
and_wf, 
equal_wf, 
list_wf, 
null_wf, 
btrue_neq_bfalse, 
equal-wf-T-base, 
list-cases, 
product_subtype_list, 
cons_member
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
independent_pairFormation, 
lambdaFormation, 
cut, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
lambdaEquality, 
functionEquality, 
independent_isectElimination, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
setElimination, 
rename, 
productElimination, 
independent_functionElimination, 
voidElimination, 
baseClosed, 
universeEquality, 
dependent_functionElimination, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
because_Cache, 
inlFormation
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    (l\_subset(T;L;[])  \mLeftarrow{}{}\mRightarrow{}  L  =  [])
Date html generated:
2018_05_21-PM-00_36_12
Last ObjectModification:
2017_10_11-PM-11_33_42
Theory : list_1
Home
Index