Nuprl Lemma : l_subset_nil_right

[T:Type]. ∀[L:T List].  (l_subset(T;L;[]) ⇐⇒ [] ∈ (T List))


Proof




Definitions occuring in Statement :  l_subset: l_subset(T;as;bs) nil: [] list: List uall: [x:A]. B[x] iff: ⇐⇒ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  l_subset: l_subset(T;as;bs) uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q all: x:A. B[x] uimplies: supposing a not: ¬A false: False or: P ∨ Q cons: [a b]
Lemmas referenced :  all_wf l_member_wf nil_wf null_nil_lemma btrue_wf member-implies-null-eq-bfalse and_wf equal_wf list_wf null_wf btrue_neq_bfalse equal-wf-T-base list-cases product_subtype_list cons_member
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation independent_pairFormation lambdaFormation cut hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality lambdaEquality functionEquality independent_isectElimination dependent_set_memberEquality equalityTransitivity equalitySymmetry applyLambdaEquality setElimination rename productElimination independent_functionElimination voidElimination baseClosed universeEquality dependent_functionElimination unionElimination promote_hyp hypothesis_subsumption because_Cache inlFormation

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    (l\_subset(T;L;[])  \mLeftarrow{}{}\mRightarrow{}  L  =  [])



Date html generated: 2018_05_21-PM-00_36_12
Last ObjectModification: 2017_10_11-PM-11_33_42

Theory : list_1


Home Index