Nuprl Lemma : last_append_singleton
∀[T:Type]. ∀L:T List. ∀a:T.  (last(L @ [a]) ~ a)
Proof
Definitions occuring in Statement : 
last: last(L)
, 
append: as @ bs
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
Lemmas referenced : 
last_singleton_append, 
subtype_rel_list, 
top_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_functionElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
independent_isectElimination, 
lambdaEquality, 
because_Cache, 
sqequalRule, 
sqequalAxiom, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}a:T.    (last(L  @  [a])  \msim{}  a)
Date html generated:
2016_05_14-PM-02_08_38
Last ObjectModification:
2015_12_26-PM-05_06_29
Theory : list_1
Home
Index