Nuprl Lemma : last_singleton_append

[x:Top]. ∀y:Top List. (last(y [x]) x)


Proof




Definitions occuring in Statement :  last: last(L) append: as bs cons: [a b] nil: [] list: List uall: [x:A]. B[x] top: Top all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a not: ¬A implies:  Q top: Top false: False prop:
Lemmas referenced :  last_append cons_wf top_wf nil_wf assert_elim null_wf null_cons_lemma bfalse_wf btrue_neq_bfalse assert_wf last_singleton2 list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination addLevel levelHypothesis dependent_functionElimination isect_memberEquality voidElimination voidEquality equalityTransitivity equalitySymmetry independent_functionElimination lambdaEquality sqequalAxiom because_Cache

Latex:
\mforall{}[x:Top].  \mforall{}y:Top  List.  (last(y  @  [x])  \msim{}  x)



Date html generated: 2016_05_14-PM-01_37_04
Last ObjectModification: 2015_12_26-PM-05_27_46

Theory : list_1


Home Index