Nuprl Lemma : list-max-aux_wf

[T:Type]. ∀[f:T ⟶ ℤ]. ∀[L:T List].  (list-max-aux(x.f[x];L) ∈ i:ℤ × {x:T| f[x] i ∈ ℤ}  Top)


Proof




Definitions occuring in Statement :  list-max-aux: list-max-aux(x.f[x];L) list: List uall: [x:A]. B[x] top: Top so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] product: x:A × B[x] union: left right int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T list-max-aux: list-max-aux(x.f[x];L) so_apply: x[s] prop: top: Top so_lambda: λ2y.t[x; y] has-value: (a)↓ uimplies: supposing a pi1: fst(t) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q subtype_rel: A ⊆B bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A so_apply: x[s1;s2]
Lemmas referenced :  list_accum_wf equal-wf-T-base top_wf value-type-has-value int-value-type lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int equal_wf int_subtype_base eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality unionEquality productEquality intEquality setEquality because_Cache hypothesis inrEquality isect_memberEquality voidElimination voidEquality lambdaEquality callbyvalueReduce independent_isectElimination applyEquality functionExtensionality unionElimination productElimination lambdaFormation equalityElimination inlEquality dependent_pairEquality dependent_set_memberEquality equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp dependent_functionElimination instantiate independent_functionElimination setElimination rename axiomEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[L:T  List].    (list-max-aux(x.f[x];L)  \mmember{}  i:\mBbbZ{}  \mtimes{}  \{x:T|  f[x]  =  i\}    +  Top)



Date html generated: 2017_04_17-AM-07_40_25
Last ObjectModification: 2017_02_27-PM-04_13_57

Theory : list_1


Home Index