Nuprl Lemma : list-max-aux_wf
∀[T:Type]. ∀[f:T ⟶ ℤ]. ∀[L:T List].  (list-max-aux(x.f[x];L) ∈ i:ℤ × {x:T| f[x] = i ∈ ℤ}  + Top)
Proof
Definitions occuring in Statement : 
list-max-aux: list-max-aux(x.f[x];L), 
list: T List, 
uall: ∀[x:A]. B[x], 
top: Top, 
so_apply: x[s], 
member: t ∈ T, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x], 
product: x:A × B[x], 
union: left + right, 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
list-max-aux: list-max-aux(x.f[x];L), 
so_apply: x[s], 
prop: ℙ, 
top: Top, 
so_lambda: λ2x y.t[x; y], 
has-value: (a)↓, 
uimplies: b supposing a, 
pi1: fst(t), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
so_apply: x[s1;s2]
Lemmas referenced : 
list_accum_wf, 
equal-wf-T-base, 
top_wf, 
value-type-has-value, 
int-value-type, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
equal_wf, 
int_subtype_base, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
less_than_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
unionEquality, 
productEquality, 
intEquality, 
setEquality, 
because_Cache, 
hypothesis, 
inrEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaEquality, 
callbyvalueReduce, 
independent_isectElimination, 
applyEquality, 
functionExtensionality, 
unionElimination, 
productElimination, 
lambdaFormation, 
equalityElimination, 
inlEquality, 
dependent_pairEquality, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
independent_functionElimination, 
setElimination, 
rename, 
axiomEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[L:T  List].    (list-max-aux(x.f[x];L)  \mmember{}  i:\mBbbZ{}  \mtimes{}  \{x:T|  f[x]  =  i\}    +  Top)
Date html generated:
2017_04_17-AM-07_40_25
Last ObjectModification:
2017_02_27-PM-04_13_57
Theory : list_1
Home
Index