Nuprl Lemma : list-max-property

[T:Type]
  ∀f:T ⟶ ℤ. ∀L:T List.  let n,x list-max(x.f[x];L) in (x ∈ L) ∧ (f[x] n ∈ ℤ) ∧ (∀y∈L.f[y] ≤ n) supposing 0 < ||L||


Proof




Definitions occuring in Statement :  list-max: list-max(x.f[x];L) l_all: (∀x∈L.P[x]) l_member: (x ∈ l) length: ||as|| list: List less_than: a < b uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B all: x:A. B[x] and: P ∧ Q function: x:A ⟶ B[x] spread: spread def natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a and: P ∧ Q list-max: list-max(x.f[x];L) outl: outl(x) list-max-aux: list-max-aux(x.f[x];L) list_accum: list_accum prop:
Lemmas referenced :  list-max-aux-property member-less_than length_wf less_than_wf list_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation dependent_functionElimination introduction natural_numberEquality independent_isectElimination rename productElimination sqequalRule functionEquality intEquality universeEquality

Latex:
\mforall{}[T:Type]
    \mforall{}f:T  {}\mrightarrow{}  \mBbbZ{}.  \mforall{}L:T  List.
        let  n,x  =  list-max(x.f[x];L)  in  (x  \mmember{}  L)  \mwedge{}  (f[x]  =  n)  \mwedge{}  (\mforall{}y\mmember{}L.f[y]  \mleq{}  n)  supposing  0  <  ||L||



Date html generated: 2016_05_14-PM-01_43_13
Last ObjectModification: 2015_12_26-PM-05_31_41

Theory : list_1


Home Index