Step
*
of Lemma
list_decomp_last
∀[T:Type]. ∀L:T List. ∃L':T List. (L = (L' @ [last(L)]) ∈ (T List)) supposing 0 < ||L||
BY
{ (Auto THEN ListInd 2 THEN Reduce 0 THEN Auto THEN (Decide ⌜||v|| = 0 ∈ ℤ⌝⋅ THENA Auto)) }
1
1. [T] : Type
2. u : T
3. v : T List
4. 0 < ||v|| 
⇒ (∃L':T List. (v = (L' @ [last(v)]) ∈ (T List)))
5. 0 < ||v|| + 1
6. ||v|| = 0 ∈ ℤ
⊢ ∃L':T List. ([u / v] = (L' @ [last([u / v])]) ∈ (T List))
2
1. [T] : Type
2. u : T
3. v : T List
4. 0 < ||v|| 
⇒ (∃L':T List. (v = (L' @ [last(v)]) ∈ (T List)))
5. 0 < ||v|| + 1
6. ¬(||v|| = 0 ∈ ℤ)
⊢ ∃L':T List. ([u / v] = (L' @ [last([u / v])]) ∈ (T List))
Latex:
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mexists{}L':T  List.  (L  =  (L'  @  [last(L)]))  supposing  0  <  ||L||
By
Latex:
(Auto  THEN  ListInd  2  THEN  Reduce  0  THEN  Auto  THEN  (Decide  \mkleeneopen{}||v||  =  0\mkleeneclose{}\mcdot{}  THENA  Auto))
Home
Index