Nuprl Lemma : list_decomp_last
∀[T:Type]. ∀L:T List. ∃L':T List. (L = (L' @ [last(L)]) ∈ (T List)) supposing 0 < ||L||
Proof
Definitions occuring in Statement : 
last: last(L)
, 
length: ||as||
, 
append: as @ bs
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
or: P ∨ Q
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
false: False
, 
and: P ∧ Q
, 
cons: [a / b]
, 
top: Top
, 
bfalse: ff
, 
not: ¬A
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
decidable: Dec(P)
, 
subtype_rel: A ⊆r B
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
guard: {T}
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced : 
member-less_than, 
length_wf, 
list_induction, 
less_than_wf, 
exists_wf, 
list_wf, 
equal_wf, 
append_wf, 
cons_wf, 
last_wf, 
list-cases, 
null_nil_lemma, 
length_of_nil_lemma, 
product_subtype_list, 
null_cons_lemma, 
length_of_cons_lemma, 
false_wf, 
nil_wf, 
decidable__equal_int, 
length-zero-implies-sq-nil, 
subtype_rel_list, 
top_wf, 
list_ind_nil_lemma, 
squash_wf, 
true_wf, 
last_singleton, 
iff_weakening_equal, 
bfalse_wf, 
assert_elim, 
btrue_neq_bfalse, 
assert_wf, 
null_wf, 
decidable__lt, 
add-is-int-iff, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf, 
last_cons, 
list_ind_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
rename, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
because_Cache, 
dependent_functionElimination, 
unionElimination, 
imageElimination, 
productElimination, 
voidElimination, 
promote_hyp, 
hypothesis_subsumption, 
isect_memberEquality, 
voidEquality, 
independent_functionElimination, 
addEquality, 
universeEquality, 
applyEquality, 
dependent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
addLevel, 
levelHypothesis, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
computeAll, 
equalityUniverse
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mexists{}L':T  List.  (L  =  (L'  @  [last(L)]))  supposing  0  <  ||L||
Date html generated:
2017_04_17-AM-08_44_46
Last ObjectModification:
2017_02_27-PM-05_02_38
Theory : list_1
Home
Index