Nuprl Lemma : list_decomp_last

[T:Type]. ∀L:T List. ∃L':T List. (L (L' [last(L)]) ∈ (T List)) supposing 0 < ||L||


Proof




Definitions occuring in Statement :  last: last(L) length: ||as|| append: as bs cons: [a b] nil: [] list: List less_than: a < b uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: or: P ∨ Q assert: b ifthenelse: if then else fi  btrue: tt less_than: a < b squash: T less_than': less_than'(a;b) false: False and: P ∧ Q cons: [a b] top: Top bfalse: ff not: ¬A so_apply: x[s] exists: x:A. B[x] decidable: Dec(P) subtype_rel: A ⊆B append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] guard: {T} true: True iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced :  member-less_than length_wf list_induction less_than_wf exists_wf list_wf equal_wf append_wf cons_wf last_wf list-cases null_nil_lemma length_of_nil_lemma product_subtype_list null_cons_lemma length_of_cons_lemma false_wf nil_wf decidable__equal_int length-zero-implies-sq-nil subtype_rel_list top_wf list_ind_nil_lemma squash_wf true_wf last_singleton iff_weakening_equal bfalse_wf assert_elim btrue_neq_bfalse assert_wf null_wf decidable__lt add-is-int-iff satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf intformeq_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_formula_prop_wf last_cons list_ind_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality cumulativity hypothesisEquality hypothesis independent_isectElimination rename sqequalRule lambdaEquality functionEquality because_Cache dependent_functionElimination unionElimination imageElimination productElimination voidElimination promote_hyp hypothesis_subsumption isect_memberEquality voidEquality independent_functionElimination addEquality universeEquality applyEquality dependent_pairFormation equalityTransitivity equalitySymmetry imageMemberEquality baseClosed addLevel levelHypothesis pointwiseFunctionality baseApply closedConclusion int_eqEquality intEquality independent_pairFormation computeAll equalityUniverse

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mexists{}L':T  List.  (L  =  (L'  @  [last(L)]))  supposing  0  <  ||L||



Date html generated: 2017_04_17-AM-08_44_46
Last ObjectModification: 2017_02_27-PM-05_02_38

Theory : list_1


Home Index