Nuprl Lemma : map-conversion-test2

[L:ℤ List]. (map(λx.(x 0);L) map(λx.x;L))


Proof




Definitions occuring in Statement :  map: map(f;as) list: List uall: [x:A]. B[x] lambda: λx.A[x] add: m natural_number: $n int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a implies:  Q prop:
Lemmas referenced :  list_wf add-zero map_functionality_wrt_sq int_subtype_base l_member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut axiomSqEquality hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin intEquality lambdaFormation hypothesisEquality sqequalRule independent_isectElimination baseClosed dependent_functionElimination because_Cache

Latex:
\mforall{}[L:\mBbbZ{}  List].  (map(\mlambda{}x.(x  +  0);L)  \msim{}  map(\mlambda{}x.x;L))



Date html generated: 2019_06_20-PM-01_33_27
Last ObjectModification: 2018_08_24-PM-11_47_12

Theory : list_1


Home Index