Nuprl Lemma : map-conversion-test2
∀[L:ℤ List]. (map(λx.(x + 0);L) ~ map(λx.x;L))
Proof
Definitions occuring in Statement : 
map: map(f;as)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
lambda: λx.A[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
list_wf, 
add-zero, 
map_functionality_wrt_sq, 
int_subtype_base, 
l_member_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
axiomSqEquality, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
lambdaFormation, 
hypothesisEquality, 
sqequalRule, 
independent_isectElimination, 
baseClosed, 
dependent_functionElimination, 
because_Cache
Latex:
\mforall{}[L:\mBbbZ{}  List].  (map(\mlambda{}x.(x  +  0);L)  \msim{}  map(\mlambda{}x.x;L))
Date html generated:
2019_06_20-PM-01_33_27
Last ObjectModification:
2018_08_24-PM-11_47_12
Theory : list_1
Home
Index