Nuprl Lemma : map_functionality_wrt_sq

[T:Type]. ∀[f,g:Base]. ∀[L:T List].  map(f;L) map(g;L) supposing ∀x:T. ((x ∈ L)  (f x)) supposing T ⊆Base


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) map: map(f;as) list: List uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] all: x:A. B[x] implies:  Q apply: a base: Base universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: so_lambda: λ2x.t[x] implies:  Q subtype_rel: A ⊆B so_apply: x[s] all: x:A. B[x] nat: false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q or: P ∨ Q cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] guard: {T} decidable: Dec(P) nil: [] it: sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) rev_implies:  Q iff: ⇐⇒ Q
Lemmas referenced :  list_wf base_wf subtype_rel_wf all_wf l_member_wf sqequal-wf-base nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list int_subtype_base list-cases map_nil_lemma product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base decidable__equal_int map_cons_lemma nil_wf cons_wf cons_member
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomSqEquality hypothesis because_Cache equalityTransitivity equalitySymmetry Error :universeIsType,  extract_by_obid Error :inhabitedIsType,  lambdaEquality functionEquality baseApply closedConclusion baseClosed applyEquality universeEquality lambdaFormation setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality intEquality dependent_functionElimination voidElimination voidEquality independent_pairFormation unionElimination promote_hyp hypothesis_subsumption productElimination applyLambdaEquality dependent_set_memberEquality addEquality instantiate cumulativity imageElimination isect_memberFormation Error :functionIsType,  sqequalIntensionalEquality inrFormation inlFormation

Latex:
\mforall{}[T:Type]
    \mforall{}[f,g:Base].  \mforall{}[L:T  List].    map(f;L)  \msim{}  map(g;L)  supposing  \mforall{}x:T.  ((x  \mmember{}  L)  {}\mRightarrow{}  (f  x  \msim{}  g  x)) 
    supposing  T  \msubseteq{}r  Base



Date html generated: 2019_06_20-PM-01_33_19
Last ObjectModification: 2018_09_26-PM-06_00_39

Theory : list_1


Home Index