Nuprl Lemma : member_not_nil
∀[T:Type]. ∀[L:T List].  ¬(L = [] ∈ (T List)) supposing ∃x:T. (x ∈ L)
Proof
Definitions occuring in Statement : 
l_member: (x ∈ l)
, 
nil: []
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
cons: [a / b]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
list-cases, 
nil_member, 
product_subtype_list, 
cons_neq_nil, 
equal-wf-T-base, 
list_wf, 
exists_wf, 
l_member_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
hypothesis, 
hypothesisEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
dependent_functionElimination, 
unionElimination, 
productElimination, 
independent_functionElimination, 
voidElimination, 
promote_hyp, 
hypothesis_subsumption, 
sqequalRule, 
cumulativity, 
baseClosed, 
lambdaEquality, 
because_Cache, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    \mneg{}(L  =  [])  supposing  \mexists{}x:T.  (x  \mmember{}  L)
Date html generated:
2017_04_14-AM-09_26_49
Last ObjectModification:
2017_02_27-PM-04_00_34
Theory : list_1
Home
Index