Nuprl Lemma : member_not_nil

[T:Type]. ∀[L:T List].  ¬(L [] ∈ (T List)) supposing ∃x:T. (x ∈ L)


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) nil: [] list: List uimplies: supposing a uall: [x:A]. B[x] exists: x:A. B[x] not: ¬A universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a not: ¬A implies:  Q false: False all: x:A. B[x] or: P ∨ Q exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q cons: [a b] prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  list-cases nil_member product_subtype_list cons_neq_nil equal-wf-T-base list_wf exists_wf l_member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin hypothesis hypothesisEquality extract_by_obid sqequalHypSubstitution isectElimination dependent_functionElimination unionElimination productElimination independent_functionElimination voidElimination promote_hyp hypothesis_subsumption sqequalRule cumulativity baseClosed lambdaEquality because_Cache isect_memberEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    \mneg{}(L  =  [])  supposing  \mexists{}x:T.  (x  \mmember{}  L)



Date html generated: 2017_04_14-AM-09_26_49
Last ObjectModification: 2017_02_27-PM-04_00_34

Theory : list_1


Home Index