Nuprl Lemma : nil_before

[T:Type]. ∀x,y:T.  (x before y ∈ [] ⇐⇒ False)


Proof




Definitions occuring in Statement :  l_before: before y ∈ l nil: [] uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q false: False universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q false: False l_before: before y ∈ l member: t ∈ T prop: rev_implies:  Q
Lemmas referenced :  cons_sublist_nil cons_wf nil_wf l_before_wf false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation cut sqequalHypSubstitution lemma_by_obid isectElimination thin because_Cache dependent_functionElimination hypothesisEquality hypothesis productElimination independent_functionElimination voidElimination universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}x,y:T.    (x  before  y  \mmember{}  []  \mLeftarrow{}{}\mRightarrow{}  False)



Date html generated: 2016_05_14-AM-07_45_16
Last ObjectModification: 2015_12_26-PM-02_53_13

Theory : list_1


Home Index