Nuprl Lemma : cons_sublist_nil
∀[T:Type]. ∀x:T. ∀L:T List.  ([x / L] ⊆ [] 
⇐⇒ False)
Proof
Definitions occuring in Statement : 
sublist: L1 ⊆ L2
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
false: False
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
false: False
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
top: Top
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
length_sublist, 
cons_wf, 
nil_wf, 
length_of_cons_lemma, 
length_of_nil_lemma, 
non_neg_length, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf, 
sublist_wf, 
false_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
productElimination, 
natural_numberEquality, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}x:T.  \mforall{}L:T  List.    ([x  /  L]  \msubseteq{}  []  \mLeftarrow{}{}\mRightarrow{}  False)
Date html generated:
2018_05_21-PM-00_33_11
Last ObjectModification:
2018_05_19-AM-06_42_50
Theory : list_1
Home
Index