Nuprl Lemma : cons_sublist_nil

[T:Type]. ∀x:T. ∀L:T List.  ([x L] ⊆ [] ⇐⇒ False)


Proof




Definitions occuring in Statement :  sublist: L1 ⊆ L2 cons: [a b] nil: [] list: List uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q false: False universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q false: False member: t ∈ T uimplies: supposing a top: Top ge: i ≥  le: A ≤ B not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] prop: rev_implies:  Q
Lemmas referenced :  length_sublist cons_wf nil_wf length_of_cons_lemma length_of_nil_lemma non_neg_length full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_wf sublist_wf false_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality hypothesis independent_isectElimination sqequalRule dependent_functionElimination isect_memberEquality voidElimination voidEquality productElimination natural_numberEquality approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}x:T.  \mforall{}L:T  List.    ([x  /  L]  \msubseteq{}  []  \mLeftarrow{}{}\mRightarrow{}  False)



Date html generated: 2018_05_21-PM-00_33_11
Last ObjectModification: 2018_05_19-AM-06_42_50

Theory : list_1


Home Index