Nuprl Lemma : length_sublist

[T:Type]. ∀[L1,L2:T List].  ||L1|| ≤ ||L2|| supposing L1 ⊆ L2


Proof




Definitions occuring in Statement :  sublist: L1 ⊆ L2 length: ||as|| list: List uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B universe: Type
Definitions unfolded in proof :  sublist: L1 ⊆ L2 uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a exists: x:A. B[x] and: P ∧ Q le: A ≤ B not: ¬A implies:  Q false: False prop: subtype_rel: A ⊆B int_seg: {i..j-} all: x:A. B[x] guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top less_than: a < b squash: T ge: i ≥  nat: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  less_than'_wf length_wf int_seg_wf increasing_wf length_wf_nat equal_wf select_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma non_neg_length lelt_wf nat_properties exists_wf all_wf list_wf increasing_le
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  introduction cut sqequalHypSubstitution productElimination thin independent_pairEquality lambdaEquality dependent_functionElimination hypothesisEquality because_Cache extract_by_obid isectElimination hypothesis axiomEquality equalityTransitivity equalitySymmetry Error :productIsType,  Error :functionIsType,  Error :universeIsType,  natural_numberEquality functionExtensionality applyEquality setElimination rename cumulativity independent_isectElimination unionElimination approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation imageElimination dependent_set_memberEquality applyLambdaEquality functionEquality productEquality Error :inhabitedIsType,  universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L1,L2:T  List].    ||L1||  \mleq{}  ||L2||  supposing  L1  \msubseteq{}  L2



Date html generated: 2019_06_20-PM-01_22_19
Last ObjectModification: 2018_09_26-PM-05_20_50

Theory : list_1


Home Index