Nuprl Lemma : increasing_le
∀[k,m:ℕ].  k ≤ m supposing ∃f:ℕk ⟶ ℕm. increasing(f;k)
Proof
Definitions occuring in Statement : 
increasing: increasing(f;k), 
int_seg: {i..j-}, 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
le: A ≤ B, 
exists: ∃x:A. B[x], 
function: x:A ⟶ B[x], 
natural_number: $n
Definitions unfolded in proof : 
exists: ∃x:A. B[x], 
true: True, 
top: Top, 
subtract: n - m, 
uiff: uiff(P;Q), 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
or: P ∨ Q, 
decidable: Dec(P), 
all: ∀x:A. B[x], 
lelt: i ≤ j < k, 
less_than': less_than'(a;b), 
squash: ↓T, 
sq_stable: SqStable(P), 
so_apply: x[s], 
int_seg: {i..j-}, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
not: ¬A, 
and: P ∧ Q, 
le: A ≤ B, 
prop: ℙ, 
uimplies: b supposing a, 
guard: {T}, 
ge: i ≥ j , 
false: False, 
implies: P ⇒ Q, 
nat: ℕ, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
sq_type: SQType(T), 
less_than: a < b, 
nat_plus: ℕ+, 
increasing: increasing(f;k)
Lemmas referenced : 
le_weakening2, 
le-add-cancel, 
add-zero, 
add_functionality_wrt_le, 
add-commutes, 
add-swap, 
add-associates, 
minus-minus, 
minus-add, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
condition-implies-le, 
less-iff-le, 
not-ge-2, 
subtract_wf, 
decidable__le, 
le_wf, 
false_wf, 
sq_stable__le, 
nat_wf, 
increasing_wf, 
int_seg_wf, 
exists_wf, 
less_than'_wf, 
less_than_wf, 
ge_wf, 
less_than_irreflexivity, 
less_than_transitivity1, 
nat_properties, 
le-add-cancel-alt, 
not-le-2, 
minus-zero, 
not-equal-2, 
int_subtype_base, 
subtype_base_sq, 
decidable__int_equal, 
lelt_wf, 
int_seg_properties, 
equal_wf, 
le_weakening, 
base_wf, 
subtype_rel-equal, 
int_seg_subtype, 
member_wf, 
not-lt-2, 
decidable__lt, 
increasing_implies, 
set_subtype_base, 
zero-mul, 
add-mul-special, 
mul-swap, 
mul-commutes, 
mul-associates, 
mul-distributes, 
omega-shadow, 
mul-distributes-right, 
two-mul, 
one-mul, 
le_reflexive, 
subtype_rel_self, 
not-equal-implies-less, 
le-add-cancel2, 
add-member-int_seg2
Rules used in proof : 
minusEquality, 
intEquality, 
voidEquality, 
addEquality, 
unionElimination, 
independent_pairFormation, 
dependent_set_memberEquality, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
applyEquality, 
functionExtensionality, 
because_Cache, 
functionEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
independent_pairEquality, 
productElimination, 
isect_memberEquality, 
dependent_functionElimination, 
lambdaEquality, 
sqequalRule, 
voidElimination, 
independent_functionElimination, 
independent_isectElimination, 
natural_numberEquality, 
lambdaFormation, 
intWeakElimination, 
rename, 
setElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
cumulativity, 
instantiate, 
promote_hyp, 
sqequalIntensionalEquality, 
dependent_pairFormation, 
applyLambdaEquality, 
hyp_replacement, 
multiplyEquality
Latex:
\mforall{}[k,m:\mBbbN{}].    k  \mleq{}  m  supposing  \mexists{}f:\mBbbN{}k  {}\mrightarrow{}  \mBbbN{}m.  increasing(f;k)
Date html generated:
2019_06_20-AM-11_33_27
Last ObjectModification:
2018_08_03-PM-05_11_14
Theory : int_1
Home
Index