Nuprl Lemma : increasing_le

[k,m:ℕ].  k ≤ supposing ∃f:ℕk ⟶ ℕm. increasing(f;k)


Proof




Definitions occuring in Statement :  increasing: increasing(f;k) int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B exists: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  exists: x:A. B[x] true: True top: Top subtract: m uiff: uiff(P;Q) rev_implies:  Q iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) all: x:A. B[x] lelt: i ≤ j < k less_than': less_than'(a;b) squash: T sq_stable: SqStable(P) so_apply: x[s] int_seg: {i..j-} subtype_rel: A ⊆B so_lambda: λ2x.t[x] not: ¬A and: P ∧ Q le: A ≤ B prop: uimplies: supposing a guard: {T} ge: i ≥  false: False implies:  Q nat: member: t ∈ T uall: [x:A]. B[x] sq_type: SQType(T) less_than: a < b nat_plus: + increasing: increasing(f;k)
Lemmas referenced :  le_weakening2 le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-minus minus-add minus-one-mul-top zero-add minus-one-mul condition-implies-le less-iff-le not-ge-2 subtract_wf decidable__le le_wf false_wf sq_stable__le nat_wf increasing_wf int_seg_wf exists_wf less_than'_wf less_than_wf ge_wf less_than_irreflexivity less_than_transitivity1 nat_properties le-add-cancel-alt not-le-2 minus-zero not-equal-2 int_subtype_base subtype_base_sq decidable__int_equal lelt_wf int_seg_properties equal_wf le_weakening base_wf subtype_rel-equal int_seg_subtype member_wf not-lt-2 decidable__lt increasing_implies set_subtype_base zero-mul add-mul-special mul-swap mul-commutes mul-associates mul-distributes omega-shadow mul-distributes-right two-mul one-mul le_reflexive subtype_rel_self not-equal-implies-less le-add-cancel2 add-member-int_seg2
Rules used in proof :  minusEquality intEquality voidEquality addEquality unionElimination independent_pairFormation dependent_set_memberEquality imageElimination baseClosed imageMemberEquality applyEquality functionExtensionality because_Cache functionEquality equalitySymmetry equalityTransitivity axiomEquality independent_pairEquality productElimination isect_memberEquality dependent_functionElimination lambdaEquality sqequalRule voidElimination independent_functionElimination independent_isectElimination natural_numberEquality lambdaFormation intWeakElimination rename setElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution cumulativity instantiate promote_hyp sqequalIntensionalEquality dependent_pairFormation applyLambdaEquality hyp_replacement multiplyEquality

Latex:
\mforall{}[k,m:\mBbbN{}].    k  \mleq{}  m  supposing  \mexists{}f:\mBbbN{}k  {}\mrightarrow{}  \mBbbN{}m.  increasing(f;k)



Date html generated: 2019_06_20-AM-11_33_27
Last ObjectModification: 2018_08_03-PM-05_11_14

Theory : int_1


Home Index