Nuprl Lemma : nil_sublist

[T:Type]. ∀L:T List. ([] ⊆ ⇐⇒ True)


Proof




Definitions occuring in Statement :  sublist: L1 ⊆ L2 nil: [] list: List uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q true: True universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q true: True member: t ∈ T prop: rev_implies:  Q top: Top
Lemmas referenced :  sublist_wf nil_wf nil-sublist true_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation natural_numberEquality cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis isect_memberEquality voidElimination voidEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  ([]  \msubseteq{}  L  \mLeftarrow{}{}\mRightarrow{}  True)



Date html generated: 2016_05_14-AM-07_43_17
Last ObjectModification: 2015_12_26-PM-02_52_08

Theory : list_1


Home Index