Nuprl Lemma : nil_sublist
∀[T:Type]. ∀L:T List. ([] ⊆ L 
⇐⇒ True)
Proof
Definitions occuring in Statement : 
sublist: L1 ⊆ L2
, 
nil: []
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
true: True
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
true: True
, 
member: t ∈ T
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
top: Top
Lemmas referenced : 
sublist_wf, 
nil_wf, 
nil-sublist, 
true_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
natural_numberEquality, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  ([]  \msubseteq{}  L  \mLeftarrow{}{}\mRightarrow{}  True)
Date html generated:
2016_05_14-AM-07_43_17
Last ObjectModification:
2015_12_26-PM-02_52_08
Theory : list_1
Home
Index