Nuprl Lemma : nil-sublist

[T,x:Top].  [] ⊆ x


Proof




Definitions occuring in Statement :  sublist: L1 ⊆ L2 nil: [] uall: [x:A]. B[x] top: Top
Definitions unfolded in proof :  uall: [x:A]. B[x] sublist: L1 ⊆ L2 select: L[n] member: t ∈ T uimplies: supposing a all: x:A. B[x] nil: [] it: so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] exists: x:A. B[x] guard: {T} int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False prop: cand: c∧ B nat: le: A ≤ B less_than': less_than'(a;b) subtype_rel: A ⊆B increasing: increasing(f;k) subtract: m
Lemmas referenced :  length_of_nil_lemma stuck-spread istype-base istype-void int_seg_properties full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf istype-int int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf int_seg_wf increasing_wf false_wf le_wf equal-wf-base-T select_wf istype-top subtract_wf itermSubtract_wf int_term_value_subtract_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  sqequalRule cut introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin baseClosed independent_isectElimination Error :lambdaFormation_alt,  Error :isect_memberEquality_alt,  voidElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  natural_numberEquality because_Cache hypothesisEquality setElimination rename productElimination approximateComputation independent_functionElimination int_eqEquality dependent_functionElimination independent_pairFormation Error :universeIsType,  Error :productIsType,  Error :dependent_set_memberEquality_alt,  functionExtensionality applyEquality equalityTransitivity equalitySymmetry applyLambdaEquality Error :functionIsType,  instantiate Error :inhabitedIsType

Latex:
\mforall{}[T,x:Top].    []  \msubseteq{}  x



Date html generated: 2019_06_20-PM-01_22_28
Last ObjectModification: 2018_09_29-PM-00_28_18

Theory : list_1


Home Index