Step
*
of Lemma
polynom_wf
∀[n:ℕ]. (polynom(n) ∈ Type)
BY
{ ((Assert ⌜∀n:ℕ. ((polynom(n) ∈ Type) ∧ (polynom(n) ⊆r polyform(n)))⌝⋅
THENM ((D 0 THENA Auto) THEN InstHyp [⌜n⌝] 1⋅ THEN Auto)
)
THEN CompleteInductionOnNat
THEN (RecUnfold `polynom` 0 THEN RecUnfold `polyform` 0)
THEN (SplitOnConclITE THENA Auto)) }
1
.....truecase.....
1. n : ℕ
2. ∀n:ℕn. ((polynom(n) ∈ Type) ∧ (polynom(n) ⊆r polyform(n)))
3. n = 0 ∈ ℤ
⊢ (ℤ ∈ Type) ∧ (ℤ ⊆r ℤ)
2
.....falsecase.....
1. n : ℕ
2. ∀n:ℕn. ((polynom(n) ∈ Type) ∧ (polynom(n) ⊆r polyform(n)))
3. ¬(n = 0 ∈ ℤ)
⊢ ({p:polynom(n - 1) List| polyform-lead-nonzero(n;p)} ∈ Type)
∧ ({p:polynom(n - 1) List| polyform-lead-nonzero(n;p)} ⊆r (polyform(n - 1) List))
Latex:
Latex:
\mforall{}[n:\mBbbN{}]. (polynom(n) \mmember{} Type)
By
Latex:
((Assert \mkleeneopen{}\mforall{}n:\mBbbN{}. ((polynom(n) \mmember{} Type) \mwedge{} (polynom(n) \msubseteq{}r polyform(n)))\mkleeneclose{}\mcdot{}
THENM ((D 0 THENA Auto) THEN InstHyp [\mkleeneopen{}n\mkleeneclose{}] 1\mcdot{} THEN Auto)
)
THEN CompleteInductionOnNat
THEN (RecUnfold `polynom` 0 THEN RecUnfold `polyform` 0)
THEN (SplitOnConclITE THENA Auto))
Home
Index