Nuprl Lemma : polynom_wf

[n:ℕ]. (polynom(n) ∈ Type)


Proof




Definitions occuring in Statement :  polynom: polynom(n) nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] squash: T polyform-lead-nonzero: polyform-lead-nonzero(n;p) cand: c∧ B rev_implies:  Q iff: ⇐⇒ Q bfalse: ff ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 less_than: a < b polyform: polyform(n) polynom: polynom(n) less_than': less_than'(a;b) le: A ≤ B or: P ∨ Q decidable: Dec(P) lelt: i ≤ j < k int_seg: {i..j-} subtype_rel: A ⊆B guard: {T} prop: and: P ∧ Q top: Top not: ¬A exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a ge: i ≥  false: False implies:  Q nat: member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x]
Lemmas referenced :  subtype_rel_set subtype_rel_list polyform_wf hd_wf poly-zero_wf length_wf list_wf equal_wf assert_of_bnot eqff_to_assert iff_weakening_uiff iff_transitivity assert_of_eq_int eqtt_to_assert uiff_transitivity not_wf bnot_wf assert_wf equal-wf-T-base bool_wf eq_int_wf nat_wf int_term_value_add_lemma itermAdd_wf lelt_wf decidable__lt le_wf int_formula_prop_eq_lemma intformeq_wf false_wf int_seg_subtype decidable__equal_int int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le int_seg_properties int_seg_wf less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties
Rules used in proof :  imageElimination functionEquality setEquality impliesFunctionality equalityElimination baseClosed isect_memberFormation addEquality dependent_set_memberEquality hypothesis_subsumption applyLambdaEquality applyEquality unionElimination because_Cache equalitySymmetry equalityTransitivity axiomEquality independent_pairEquality productElimination independent_functionElimination computeAll independent_pairFormation voidEquality voidElimination isect_memberEquality dependent_functionElimination intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_isectElimination natural_numberEquality intWeakElimination sqequalRule rename setElimination hypothesis hypothesisEquality isectElimination sqequalHypSubstitution extract_by_obid introduction thin lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution cut

Latex:
\mforall{}[n:\mBbbN{}].  (polynom(n)  \mmember{}  Type)



Date html generated: 2017_04_17-AM-09_03_23
Last ObjectModification: 2017_04_13-PM-01_07_34

Theory : list_1


Home Index