Nuprl Lemma : poly-zero_wf

[n:ℕ]. ∀[p:polyform(n)].  (poly-zero(n;p) ∈ 𝔹)


Proof




Definitions occuring in Statement :  poly-zero: poly-zero(n;p) polyform: polyform(n) nat: bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  guard: {T} sq_type: SQType(T) top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) ge: i ≥  false: False rev_implies:  Q prop: not: ¬A iff: ⇐⇒ Q bfalse: ff polyform: polyform(n) ifthenelse: if then else fi  uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 implies:  Q all: x:A. B[x] nat: poly-zero: poly-zero(n;p) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  bool_subtype_base subtype_base_sq bool_cases le_wf int_formula_prop_wf int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformeq_wf itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties subtract_wf null_wf nat_wf polyform_wf equal_wf assert_of_bnot eqff_to_assert iff_weakening_uiff not_wf bnot_wf iff_transitivity assert_of_eq_int eqtt_to_assert assert_wf equal-wf-T-base uiff_transitivity bool_wf eq_int_wf
Rules used in proof :  cumulativity instantiate computeAll voidEquality int_eqEquality lambdaEquality dependent_pairFormation dependent_set_memberEquality voidElimination isect_memberEquality axiomEquality dependent_functionElimination impliesFunctionality independent_pairFormation independent_isectElimination productElimination independent_functionElimination intEquality because_Cache baseClosed equalitySymmetry equalityTransitivity equalityElimination unionElimination lambdaFormation natural_numberEquality hypothesis hypothesisEquality rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p:polyform(n)].    (poly-zero(n;p)  \mmember{}  \mBbbB{})



Date html generated: 2017_04_17-AM-09_02_02
Last ObjectModification: 2017_04_13-AM-11_53_40

Theory : list_1


Home Index