Nuprl Lemma : poly-zero_wf
∀[n:ℕ]. ∀[p:polyform(n)].  (poly-zero(n;p) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
poly-zero: poly-zero(n;p)
, 
polyform: polyform(n)
, 
nat: ℕ
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
guard: {T}
, 
sq_type: SQType(T)
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
false: False
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
, 
not: ¬A
, 
iff: P 
⇐⇒ Q
, 
bfalse: ff
, 
polyform: polyform(n)
, 
ifthenelse: if b then t else f fi 
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
poly-zero: poly-zero(n;p)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
bool_subtype_base, 
subtype_base_sq, 
bool_cases, 
le_wf, 
int_formula_prop_wf, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformeq_wf, 
itermVar_wf, 
itermSubtract_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
subtract_wf, 
null_wf, 
nat_wf, 
polyform_wf, 
equal_wf, 
assert_of_bnot, 
eqff_to_assert, 
iff_weakening_uiff, 
not_wf, 
bnot_wf, 
iff_transitivity, 
assert_of_eq_int, 
eqtt_to_assert, 
assert_wf, 
equal-wf-T-base, 
uiff_transitivity, 
bool_wf, 
eq_int_wf
Rules used in proof : 
cumulativity, 
instantiate, 
computeAll, 
voidEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
dependent_set_memberEquality, 
voidElimination, 
isect_memberEquality, 
axiomEquality, 
dependent_functionElimination, 
impliesFunctionality, 
independent_pairFormation, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
intEquality, 
because_Cache, 
baseClosed, 
equalitySymmetry, 
equalityTransitivity, 
equalityElimination, 
unionElimination, 
lambdaFormation, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p:polyform(n)].    (poly-zero(n;p)  \mmember{}  \mBbbB{})
Date html generated:
2017_04_17-AM-09_02_02
Last ObjectModification:
2017_04_13-AM-11_53_40
Theory : list_1
Home
Index