Nuprl Lemma : reduce-append

[f,k,as,bs:Top].  (reduce(f;k;as bs) reduce(f;reduce(f;k;bs);as))


Proof




Definitions occuring in Statement :  append: as bs reduce: reduce(f;k;as) uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T append: as bs reduce: reduce(f;k;as) so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a strict1: strict1(F) and: P ∧ Q all: x:A. B[x] implies:  Q list_ind: list_ind has-value: (a)↓ prop: or: P ∨ Q squash: T guard: {T} so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] top: Top
Lemmas referenced :  top_wf sqle_wf_base reduce_cons_lemma is-exception_wf base_wf has-value_wf_base sqequal-list_ind
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin lemma_by_obid sqequalHypSubstitution isectElimination baseApply closedConclusion baseClosed hypothesisEquality independent_isectElimination independent_pairFormation lambdaFormation callbyvalueCallbyvalue hypothesis callbyvalueReduce callbyvalueExceptionCases inlFormation imageMemberEquality imageElimination exceptionSqequal inrFormation dependent_functionElimination isect_memberEquality voidElimination voidEquality divergentSqle sqleRule sqleReflexivity because_Cache sqequalAxiom

Latex:
\mforall{}[f,k,as,bs:Top].    (reduce(f;k;as  @  bs)  \msim{}  reduce(f;reduce(f;k;bs);as))



Date html generated: 2016_05_14-AM-07_38_07
Last ObjectModification: 2016_01_15-AM-08_43_14

Theory : list_1


Home Index