Nuprl Lemma : reverse-append
∀[T:Type]. ∀[as,bs:T List].  (rev(as @ bs) ~ rev(bs) @ rev(as))
Proof
Definitions occuring in Statement : 
reverse: rev(as)
, 
append: as @ bs
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
top: Top
Lemmas referenced : 
reverse_append_sq, 
subtype_rel_list, 
top_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
independent_isectElimination, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
sqequalRule, 
sqequalAxiom, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[as,bs:T  List].    (rev(as  @  bs)  \msim{}  rev(bs)  @  rev(as))
Date html generated:
2016_05_14-PM-01_48_44
Last ObjectModification:
2015_12_26-PM-05_35_26
Theory : list_1
Home
Index