Nuprl Lemma : reverse-append

[T:Type]. ∀[as,bs:T List].  (rev(as bs) rev(bs) rev(as))


Proof




Definitions occuring in Statement :  reverse: rev(as) append: as bs list: List uall: [x:A]. B[x] universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a top: Top
Lemmas referenced :  reverse_append_sq subtype_rel_list top_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis independent_isectElimination lambdaEquality isect_memberEquality voidElimination voidEquality because_Cache sqequalRule sqequalAxiom universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[as,bs:T  List].    (rev(as  @  bs)  \msim{}  rev(bs)  @  rev(as))



Date html generated: 2016_05_14-PM-01_48_44
Last ObjectModification: 2015_12_26-PM-05_35_26

Theory : list_1


Home Index