Nuprl Lemma : set-equal-l_contains

[T:Type]. ∀x,y:T List.  (set-equal(T;x;y) ⇐⇒ x ⊆ y ∧ y ⊆ x)


Proof




Definitions occuring in Statement :  set-equal: set-equal(T;x;y) l_contains: A ⊆ B list: List uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] l_contains: A ⊆ B set-equal: set-equal(T;x;y) iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q guard: {T}
Lemmas referenced :  l_member_wf all_wf iff_wf l_all_iff l_all_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut independent_pairFormation introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache sqequalRule lambdaEquality productElimination productEquality functionEquality addLevel independent_functionElimination dependent_functionElimination setElimination rename setEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}x,y:T  List.    (set-equal(T;x;y)  \mLeftarrow{}{}\mRightarrow{}  x  \msubseteq{}  y  \mwedge{}  y  \msubseteq{}  x)



Date html generated: 2019_06_20-PM-01_30_21
Last ObjectModification: 2018_08_24-PM-11_35_14

Theory : list_1


Home Index