Nuprl Lemma : sqequal-nil

[T:Type]. ∀[l:T List].  [] supposing [] ∈ (T List)


Proof




Definitions occuring in Statement :  nil: [] list: List uimplies: supposing a uall: [x:A]. B[x] universe: Type sqequal: t equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] or: P ∨ Q cons: [a b] assert: b ifthenelse: if then else fi  btrue: tt bfalse: ff iff: ⇐⇒ Q and: P ∧ Q implies:  Q false: False uiff: uiff(P;Q) top: Top prop: rev_implies:  Q true: True not: ¬A
Lemmas referenced :  list-cases product_subtype_list iff_imp_equal_bool btrue_wf bfalse_wf assert_of_null null_cons_lemma istype-void true_wf false_wf btrue_neq_bfalse list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut hypothesisEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis dependent_functionElimination unionElimination promote_hyp hypothesis_subsumption productElimination sqequalRule independent_isectElimination independent_pairFormation Error :lambdaFormation_alt,  equalityTransitivity equalitySymmetry Error :isect_memberEquality_alt,  voidElimination Error :universeIsType,  natural_numberEquality independent_functionElimination axiomSqEquality Error :equalityIsType3,  Error :inhabitedIsType,  baseClosed because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[l:T  List].    l  \msim{}  []  supposing  l  =  []



Date html generated: 2019_06_20-PM-01_19_17
Last ObjectModification: 2018_09_30-PM-03_55_34

Theory : list_1


Home Index