Nuprl Lemma : test-change-equality
∀[L1:ℕ List]. ∀[L2:ℤ List].  ((L1 = L2 ∈ (ℤ List)) 
⇒ (L1 = L2 ∈ (ℕ List)))
Proof
Definitions occuring in Statement : 
list: T List
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
list_subtype_base, 
nat_wf, 
set_subtype_base, 
le_wf, 
istype-int, 
int_subtype_base, 
list_wf, 
change-equality-type, 
respects-equality-list, 
subtype-base-respects-equality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
Error :equalityIstype, 
because_Cache, 
cut, 
hypothesisEquality, 
applyEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
intEquality, 
Error :lambdaEquality_alt, 
closedConclusion, 
natural_numberEquality, 
sqequalBase, 
equalitySymmetry, 
Error :universeIsType, 
independent_functionElimination, 
dependent_functionElimination, 
equalityTransitivity
Latex:
\mforall{}[L1:\mBbbN{}  List].  \mforall{}[L2:\mBbbZ{}  List].    ((L1  =  L2)  {}\mRightarrow{}  (L1  =  L2))
Date html generated:
2019_06_20-PM-01_49_13
Last ObjectModification:
2018_11_29-PM-05_52_22
Theory : list_1
Home
Index