Nuprl Lemma : unzip_zip

[T1,T2:Type]. ∀[as:T1 List]. ∀[bs:T2 List].
  unzip(zip(as;bs)) = <as, bs> ∈ (T1 List × (T2 List)) supposing ||as|| ||bs|| ∈ ℤ


Proof




Definitions occuring in Statement :  unzip: unzip(as) zip: zip(as;bs) length: ||as|| list: List uimplies: supposing a uall: [x:A]. B[x] pair: <a, b> product: x:A × B[x] int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  unzip-zip subtype_rel_list top_wf istype-int length_wf_nat set_subtype_base le_wf int_subtype_base list_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis independent_isectElimination lambdaEquality_alt Error :memTop,  universeIsType independent_pairEquality equalityIstype intEquality natural_numberEquality sqequalBase equalitySymmetry inhabitedIsType instantiate universeEquality

Latex:
\mforall{}[T1,T2:Type].  \mforall{}[as:T1  List].  \mforall{}[bs:T2  List].    unzip(zip(as;bs))  =  <as,  bs>  supposing  ||as||  =  ||bs||



Date html generated: 2020_05_19-PM-09_50_38
Last ObjectModification: 2020_02_27-PM-04_07_28

Theory : list_1


Home Index