Nuprl Lemma : div_induction-ext
∀b:{b:ℤ| 1 < b} . ∀[P:ℤ ⟶ ℙ]. (P[0] 
⇒ (∀i:ℤ-o. (P[i ÷ b] 
⇒ P[i])) 
⇒ (∀i:ℤ. P[i]))
Proof
Definitions occuring in Statement : 
int_nzero: ℤ-o
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
divide: n ÷ m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
member: t ∈ T
, 
genrec-ap: genrec-ap, 
div_induction, 
uniform-comp-nat-induction, 
decidable__equal_int, 
iff_weakening_equal, 
decidable__int_equal, 
uall: ∀[x:A]. B[x]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
so_apply: x[s]
, 
uimplies: b supposing a
Lemmas referenced : 
div_induction, 
lifting-strict-int_eq, 
istype-void, 
strict4-decide, 
uniform-comp-nat-induction, 
decidable__equal_int, 
iff_weakening_equal, 
decidable__int_equal
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry, 
isectElimination, 
baseClosed, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_isectElimination
Latex:
\mforall{}b:\{b:\mBbbZ{}|  1  <  b\}  .  \mforall{}[P:\mBbbZ{}  {}\mrightarrow{}  \mBbbP{}].  (P[0]  {}\mRightarrow{}  (\mforall{}i:\mBbbZ{}\msupminus{}\msupzero{}.  (P[i  \mdiv{}  b]  {}\mRightarrow{}  P[i]))  {}\mRightarrow{}  (\mforall{}i:\mBbbZ{}.  P[i]))
Date html generated:
2019_06_20-PM-02_33_05
Last ObjectModification:
2019_04_15-PM-10_31_32
Theory : num_thy_1
Home
Index