Nuprl Lemma : div_induction

b:{b:ℤ1 < b} . ∀[P:ℤ ⟶ ℙ]. (P[0]  (∀i:ℤ-o(P[i ÷ b]  P[i]))  (∀i:ℤP[i]))


Proof




Definitions occuring in Statement :  int_nzero: -o less_than: a < b uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] divide: n ÷ m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q member: t ∈ T so_apply: x[s] int_nzero: -o nequal: a ≠ b ∈  not: ¬A false: False uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} so_lambda: λ2x.t[x] nat: decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) ge: i ≥  int_seg: {i..j-} uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt iff: ⇐⇒ Q rev_implies:  Q bfalse: ff lelt: i ≤ j < k sq_stable: SqStable(P) squash: T int_upper: {i...} less_than: a < b le: A ≤ B less_than': less_than'(a;b)
Lemmas referenced :  int_nzero_wf int_nzero_properties full-omega-unsat intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf int_subtype_base subtype_rel_self less_than_wf uniform-comp-nat-induction all_wf absval_wf nat_wf decidable__equal_int subtype_base_sq nat_properties set_subtype_base set-value-type equal_wf int-value-type int_seg_wf absval_ifthenelse le_wf lt_int_wf assert_wf bnot_wf not_wf intformnot_wf itermMinus_wf int_formula_prop_not_lemma int_term_value_minus_lemma bool_cases bool_wf bool_subtype_base eqtt_to_assert assert_of_lt_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot nequal_wf subtract_wf sq_stable__less_than decidable__le intformle_wf itermSubtract_wf int_formula_prop_le_lemma int_term_value_subtract_lemma decidable__lt iff_weakening_equal absval_div_decreases subtype_rel_sets add_nat_wf istype-false add-is-int-iff itermAdd_wf int_term_value_add_lemma false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  Error :isect_memberFormation_alt,  cut sqequalRule Error :functionIsType,  Error :universeIsType,  introduction extract_by_obid hypothesis applyEquality hypothesisEquality divideEquality sqequalHypSubstitution setElimination thin rename because_Cache isectElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination independent_pairFormation Error :equalityIsType4,  Error :inhabitedIsType,  baseApply closedConclusion baseClosed instantiate universeEquality Error :setIsType,  setEquality intEquality unionElimination cumulativity cutEval Error :dependent_set_memberEquality_alt,  equalityTransitivity equalitySymmetry Error :equalityIsType1,  Error :isectIsType,  productElimination imageMemberEquality imageElimination Error :productIsType,  addEquality applyLambdaEquality pointwiseFunctionality promote_hyp

Latex:
\mforall{}b:\{b:\mBbbZ{}|  1  <  b\}  .  \mforall{}[P:\mBbbZ{}  {}\mrightarrow{}  \mBbbP{}].  (P[0]  {}\mRightarrow{}  (\mforall{}i:\mBbbZ{}\msupminus{}\msupzero{}.  (P[i  \mdiv{}  b]  {}\mRightarrow{}  P[i]))  {}\mRightarrow{}  (\mforall{}i:\mBbbZ{}.  P[i]))



Date html generated: 2019_06_20-PM-02_33_00
Last ObjectModification: 2019_03_19-AM-10_48_21

Theory : num_thy_1


Home Index