Nuprl Lemma : absval_div_decreases
∀[n:{2...}]. ∀[i:ℤ-o].  |i ÷ n| < |i|
Proof
Definitions occuring in Statement : 
absval: |i|
, 
int_upper: {i...}
, 
int_nzero: ℤ-o
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
divide: n ÷ m
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat_plus: ℕ+
, 
int_upper: {i...}
, 
int_nzero: ℤ-o
, 
le: A ≤ B
, 
and: P ∧ Q
, 
nequal: a ≠ b ∈ T 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
less_than': less_than'(a;b)
, 
true: True
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
nat: ℕ
, 
less_than: a < b
, 
squash: ↓T
, 
ge: i ≥ j 
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
Lemmas referenced : 
absval_div_nat, 
decidable__lt, 
false_wf, 
not-lt-2, 
not-equal-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
less_than_wf, 
div_rem_sum, 
absval_wf, 
subtype_rel_sets, 
le_wf, 
nequal_wf, 
int_upper_properties, 
int_nzero_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
equal-wf-base, 
int_subtype_base, 
rem_bounds_1, 
int_nzero_wf, 
member-less_than, 
nat_wf, 
int_upper_wf, 
intformless_wf, 
int_formula_prop_less_lemma, 
decidable__le, 
add-is-int-iff, 
multiply-is-int-iff, 
intformnot_wf, 
int_formula_prop_not_lemma, 
mul_preserves_le, 
int_upper_subtype_nat, 
itermMultiply_wf, 
itermAdd_wf, 
int_term_value_mul_lemma, 
int_term_value_add_lemma, 
decidable__equal_int, 
nat_properties, 
absval_unfold, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
top_wf, 
equal-wf-T-base, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
itermMinus_wf, 
int_term_value_minus_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_set_memberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
productElimination, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_pairFormation, 
lambdaFormation, 
voidElimination, 
independent_functionElimination, 
independent_isectElimination, 
applyEquality, 
lambdaEquality, 
isect_memberEquality, 
voidEquality, 
intEquality, 
because_Cache, 
setEquality, 
applyLambdaEquality, 
dependent_pairFormation, 
int_eqEquality, 
computeAll, 
baseClosed, 
divideEquality, 
equalityTransitivity, 
equalitySymmetry, 
imageElimination, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
multiplyEquality, 
minusEquality, 
equalityElimination, 
lessCases, 
sqequalAxiom, 
imageMemberEquality, 
instantiate, 
cumulativity
Latex:
\mforall{}[n:\{2...\}].  \mforall{}[i:\mBbbZ{}\msupminus{}\msupzero{}].    |i  \mdiv{}  n|  <  |i|
Date html generated:
2017_04_14-AM-09_22_50
Last ObjectModification:
2017_02_27-PM-03_58_40
Theory : int_2
Home
Index