Nuprl Lemma : absval_div_decreases

[n:{2...}]. ∀[i:ℤ-o].  |i ÷ n| < |i|


Proof




Definitions occuring in Statement :  absval: |i| int_upper: {i...} int_nzero: -o less_than: a < b uall: [x:A]. B[x] divide: n ÷ m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat_plus: + int_upper: {i...} int_nzero: -o le: A ≤ B and: P ∧ Q nequal: a ≠ b ∈  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q implies:  Q false: False prop: uiff: uiff(P;Q) uimplies: supposing a subtype_rel: A ⊆B top: Top less_than': less_than'(a;b) true: True so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] nat: less_than: a < b squash: T ge: i ≥  bool: 𝔹 unit: Unit it: btrue: tt bfalse: ff sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b
Lemmas referenced :  absval_div_nat decidable__lt false_wf not-lt-2 not-equal-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel less_than_wf div_rem_sum absval_wf subtype_rel_sets le_wf nequal_wf int_upper_properties int_nzero_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf equal-wf-base int_subtype_base rem_bounds_1 int_nzero_wf member-less_than nat_wf int_upper_wf intformless_wf int_formula_prop_less_lemma decidable__le add-is-int-iff multiply-is-int-iff intformnot_wf int_formula_prop_not_lemma mul_preserves_le int_upper_subtype_nat itermMultiply_wf itermAdd_wf int_term_value_mul_lemma int_term_value_add_lemma decidable__equal_int nat_properties absval_unfold lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf equal-wf-T-base eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot itermMinus_wf int_term_value_minus_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality setElimination rename hypothesisEquality hypothesis productElimination dependent_functionElimination natural_numberEquality unionElimination independent_pairFormation lambdaFormation voidElimination independent_functionElimination independent_isectElimination applyEquality lambdaEquality isect_memberEquality voidEquality intEquality because_Cache setEquality applyLambdaEquality dependent_pairFormation int_eqEquality computeAll baseClosed divideEquality equalityTransitivity equalitySymmetry imageElimination pointwiseFunctionality promote_hyp baseApply closedConclusion multiplyEquality minusEquality equalityElimination lessCases sqequalAxiom imageMemberEquality instantiate cumulativity

Latex:
\mforall{}[n:\{2...\}].  \mforall{}[i:\mBbbZ{}\msupminus{}\msupzero{}].    |i  \mdiv{}  n|  <  |i|



Date html generated: 2017_04_14-AM-09_22_50
Last ObjectModification: 2017_02_27-PM-03_58_40

Theory : int_2


Home Index