Nuprl Lemma : absval_div_nat

[n:ℕ+]. ∀[i:ℤ].  (|i| ÷ |i ÷ n|)


Proof




Definitions occuring in Statement :  absval: |i| nat_plus: + uall: [x:A]. B[x] divide: n ÷ m int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) implies:  Q guard: {T} nat: prop: squash: T nat_plus: + nequal: a ≠ b ∈  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q subtype_rel: A ⊆B true: True iff: ⇐⇒ Q rev_implies:  Q int_lower: {...i} bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) less_than: a < b less_than': less_than'(a;b) bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b
Lemmas referenced :  subtype_base_sq int_subtype_base decidable__le nat_plus_wf div_bounds_1 le_wf equal_wf squash_wf true_wf absval_pos nat_plus_properties full-omega-unsat intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf equal-wf-base divide_wf subtype_rel_self iff_weakening_equal div_bounds_2 intformnot_wf intformle_wf int_formula_prop_not_lemma int_formula_prop_le_lemma absval_unfold2 lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot minus_functionality_wrt_eq div_2_to_1 minus_minus_cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity intEquality independent_isectElimination hypothesis dependent_functionElimination natural_numberEquality hypothesisEquality unionElimination equalityTransitivity equalitySymmetry independent_functionElimination sqequalAxiom sqequalRule isect_memberEquality because_Cache dependent_set_memberEquality applyEquality lambdaEquality imageElimination universeEquality divideEquality setElimination rename lambdaFormation approximateComputation dependent_pairFormation int_eqEquality voidElimination voidEquality independent_pairFormation baseClosed imageMemberEquality productElimination minusEquality equalityElimination lessCases promote_hyp

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[i:\mBbbZ{}].    (|i|  \mdiv{}  n  \msim{}  |i  \mdiv{}  n|)



Date html generated: 2018_05_21-PM-00_30_20
Last ObjectModification: 2018_05_15-PM-05_47_32

Theory : int_2


Home Index