Nuprl Lemma : div_bounds_2

[a:{...-1}]. ∀[n:ℕ+].  ((a ÷ n) ≤ 0)


Proof




Definitions occuring in Statement :  int_lower: {...i} nat_plus: + uall: [x:A]. B[x] le: A ≤ B divide: n ÷ m minus: -n natural_number: $n
Definitions unfolded in proof :  true: True less_than': less_than'(a;b) top: Top subtract: m uiff: uiff(P;Q) rev_implies:  Q iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) and: P ∧ Q le: A ≤ B int_lower: {...i} guard: {T} false: False not: ¬A nequal: a ≠ b ∈  implies:  Q all: x:A. B[x] prop: uimplies: supposing a so_apply: x[s] so_lambda: λ2x.t[x] int_nzero: -o nat_plus: + subtype_rel: A ⊆B member: t ∈ T uall: [x:A]. B[x] ge: i ≥  rev_uimplies: rev_uimplies(P;Q) gt: i > j squash: T sq_stable: SqStable(P) sq_type: SQType(T)
Lemmas referenced :  int_lower_wf nat_plus_wf less_than'_wf le-add-cancel2 add_functionality_wrt_le zero-add minus-zero minus-add add-commutes condition-implies-le not-le-2 false_wf decidable__le le_wf rem_bounds_2 int_subtype_base equal-wf-base equal_wf less_than_irreflexivity le_weakening less_than_transitivity1 nequal_wf less_than_wf subtype_rel_sets div_rem_sum add-associates minus-one-mul-top add-swap minus-one-mul add-zero nat_plus_subtype_nat mul_preserves_le multiply-is-int-iff mul-commutes le_functionality zero-mul add-mul-special one-mul set_subtype_base le_reflexive add_functionality_wrt_lt less_than_transitivity2 minus-is-int-iff add-is-int-iff less-iff-le sq_stable_from_decidable subtype_base_sq
Rules used in proof :  equalitySymmetry equalityTransitivity axiomEquality divideEquality independent_pairEquality voidEquality isect_memberEquality addEquality independent_pairFormation unionElimination productElimination minusEquality baseClosed voidElimination independent_functionElimination dependent_functionElimination lambdaFormation setEquality rename setElimination independent_isectElimination hypothesis natural_numberEquality lambdaEquality intEquality sqequalRule applyEquality hypothesisEquality because_Cache thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution closedConclusion baseApply remainderEquality multiplyEquality imageElimination imageMemberEquality cumulativity instantiate

Latex:
\mforall{}[a:\{...-1\}].  \mforall{}[n:\mBbbN{}\msupplus{}].    ((a  \mdiv{}  n)  \mleq{}  0)



Date html generated: 2017_09_29-PM-05_47_11
Last ObjectModification: 2017_07_31-PM-04_18_52

Theory : arithmetic


Home Index