Nuprl Lemma : div_bounds_2
∀[a:{...-1}]. ∀[n:ℕ+].  ((a ÷ n) ≤ 0)
Proof
Definitions occuring in Statement : 
int_lower: {...i}
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
divide: n ÷ m
, 
minus: -n
, 
natural_number: $n
Definitions unfolded in proof : 
true: True
, 
less_than': less_than'(a;b)
, 
top: Top
, 
subtract: n - m
, 
uiff: uiff(P;Q)
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
int_lower: {...i}
, 
guard: {T}
, 
false: False
, 
not: ¬A
, 
nequal: a ≠ b ∈ T 
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
int_nzero: ℤ-o
, 
nat_plus: ℕ+
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
ge: i ≥ j 
, 
rev_uimplies: rev_uimplies(P;Q)
, 
gt: i > j
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
sq_type: SQType(T)
Lemmas referenced : 
int_lower_wf, 
nat_plus_wf, 
less_than'_wf, 
le-add-cancel2, 
add_functionality_wrt_le, 
zero-add, 
minus-zero, 
minus-add, 
add-commutes, 
condition-implies-le, 
not-le-2, 
false_wf, 
decidable__le, 
le_wf, 
rem_bounds_2, 
int_subtype_base, 
equal-wf-base, 
equal_wf, 
less_than_irreflexivity, 
le_weakening, 
less_than_transitivity1, 
nequal_wf, 
less_than_wf, 
subtype_rel_sets, 
div_rem_sum, 
add-associates, 
minus-one-mul-top, 
add-swap, 
minus-one-mul, 
add-zero, 
nat_plus_subtype_nat, 
mul_preserves_le, 
multiply-is-int-iff, 
mul-commutes, 
le_functionality, 
zero-mul, 
add-mul-special, 
one-mul, 
set_subtype_base, 
le_reflexive, 
add_functionality_wrt_lt, 
less_than_transitivity2, 
minus-is-int-iff, 
add-is-int-iff, 
less-iff-le, 
sq_stable_from_decidable, 
subtype_base_sq
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
divideEquality, 
independent_pairEquality, 
voidEquality, 
isect_memberEquality, 
addEquality, 
independent_pairFormation, 
unionElimination, 
productElimination, 
minusEquality, 
baseClosed, 
voidElimination, 
independent_functionElimination, 
dependent_functionElimination, 
lambdaFormation, 
setEquality, 
rename, 
setElimination, 
independent_isectElimination, 
hypothesis, 
natural_numberEquality, 
lambdaEquality, 
intEquality, 
sqequalRule, 
applyEquality, 
hypothesisEquality, 
because_Cache, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
closedConclusion, 
baseApply, 
remainderEquality, 
multiplyEquality, 
imageElimination, 
imageMemberEquality, 
cumulativity, 
instantiate
Latex:
\mforall{}[a:\{...-1\}].  \mforall{}[n:\mBbbN{}\msupplus{}].    ((a  \mdiv{}  n)  \mleq{}  0)
Date html generated:
2017_09_29-PM-05_47_11
Last ObjectModification:
2017_07_31-PM-04_18_52
Theory : arithmetic
Home
Index