Nuprl Lemma : add_functionality_wrt_lt
∀[i1,i2,j1,j2:ℤ].  (i1 + i2 < j1 + j2) supposing ((i2 ≤ j2) and i1 < j1)
Proof
Definitions occuring in Statement : 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
add: n + m
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
or: P ∨ Q
, 
guard: {T}
Lemmas referenced : 
add-monotonic, 
le_wf, 
less_than_wf, 
member-less_than, 
equal_wf, 
le-iff-less-or-equal
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
isectElimination, 
addEquality, 
because_Cache, 
intEquality, 
isect_memberFormation, 
sqequalRule, 
isect_memberEquality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
lemma_by_obid, 
unionElimination, 
inrFormation, 
inlFormation
Latex:
\mforall{}[i1,i2,j1,j2:\mBbbZ{}].    (i1  +  i2  <  j1  +  j2)  supposing  ((i2  \mleq{}  j2)  and  i1  <  j1)
Date html generated:
2019_06_20-AM-11_22_54
Last ObjectModification:
2018_08_17-PM-00_00_07
Theory : arithmetic
Home
Index