Nuprl Lemma : minus_minus_cancel

[a:ℤ]. ((--a) a ∈ ℤ)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] minus: -n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop:
Lemmas referenced :  int_formula_prop_wf int_term_value_var_lemma int_term_value_minus_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermVar_wf itermMinus_wf intformeq_wf intformnot_wf satisfiable-full-omega-tt decidable__equal_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin because_Cache hypothesis unionElimination isectElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality hypothesisEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule computeAll

Latex:
\mforall{}[a:\mBbbZ{}].  ((--a)  =  a)



Date html generated: 2016_05_14-AM-07_20_24
Last ObjectModification: 2016_01_07-PM-03_59_47

Theory : int_2


Home Index