Step
*
2
1
of Lemma
div_mono1
1. i : ℕ
2. k : ℕ
3. 0 < i
4. 1 < k
5. ¬i < k
6. i = (((i ÷ k) * k) + (i rem k)) ∈ ℤ
7. (0 ≤ (i rem k)) ∧ i rem k < k
⊢ i ÷ k < i
BY
{ Assert ⌜((i ÷ k) * k) ≤ i⌝⋅ }
1
.....assertion.....
1. i : ℕ
2. k : ℕ
3. 0 < i
4. 1 < k
5. ¬i < k
6. i = (((i ÷ k) * k) + (i rem k)) ∈ ℤ
7. (0 ≤ (i rem k)) ∧ i rem k < k
⊢ ((i ÷ k) * k) ≤ i
2
1. i : ℕ
2. k : ℕ
3. 0 < i
4. 1 < k
5. ¬i < k
6. i = (((i ÷ k) * k) + (i rem k)) ∈ ℤ
7. (0 ≤ (i rem k)) ∧ i rem k < k
8. ((i ÷ k) * k) ≤ i
⊢ i ÷ k < i
Latex:
Latex:
1. i : \mBbbN{}
2. k : \mBbbN{}
3. 0 < i
4. 1 < k
5. \mneg{}i < k
6. i = (((i \mdiv{} k) * k) + (i rem k))
7. (0 \mleq{} (i rem k)) \mwedge{} i rem k < k
\mvdash{} i \mdiv{} k < i
By
Latex:
Assert \mkleeneopen{}((i \mdiv{} k) * k) \mleq{} i\mkleeneclose{}\mcdot{}
Home
Index