Nuprl Lemma : div_mono1
∀[i,k:ℕ].  (i ÷ k < i) supposing (1 < k and 0 < i)
Proof
Definitions occuring in Statement : 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
divide: n ÷ m
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
nat: ℕ
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
ge: i ≥ j 
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
uiff: uiff(P;Q)
, 
squash: ↓T
, 
less_than: a < b
Lemmas referenced : 
decidable__lt, 
istype-less_than, 
member-less_than, 
divide_wfa, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
int_subtype_base, 
nequal_wf, 
istype-nat, 
div_base_case, 
intformnot_wf, 
int_formula_prop_not_lemma, 
div_rem_sum, 
rem_bounds_1, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
mul_preserves_le, 
divide_wf, 
satisfiable-full-omega-tt, 
equal_wf, 
add-is-int-iff, 
multiply-is-int-iff, 
itermMultiply_wf, 
itermAdd_wf, 
int_term_value_mul_lemma, 
int_term_value_add_lemma, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
because_Cache, 
hypothesis, 
unionElimination, 
isectElimination, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
sqequalRule, 
Error :isect_memberEquality_alt, 
Error :dependent_set_memberEquality_alt, 
Error :lambdaFormation_alt, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
voidElimination, 
independent_pairFormation, 
Error :universeIsType, 
Error :equalityIstype, 
applyEquality, 
baseClosed, 
sqequalBase, 
equalitySymmetry, 
intEquality, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType, 
equalityTransitivity, 
closedConclusion, 
baseApply, 
promote_hyp, 
pointwiseFunctionality, 
computeAll, 
voidEquality, 
isect_memberEquality, 
lambdaEquality, 
dependent_pairFormation, 
imageElimination, 
lambdaFormation, 
divideEquality, 
multiplyEquality, 
lemma_by_obid, 
productElimination
Latex:
\mforall{}[i,k:\mBbbN{}].    (i  \mdiv{}  k  <  i)  supposing  (1  <  k  and  0  <  i)
Date html generated:
2019_06_20-PM-02_31_15
Last ObjectModification:
2019_03_06-AM-10_53_24
Theory : num_thy_1
Home
Index