Nuprl Lemma : equal_int_mod_iff_modulus

[n:ℕ+]. ∀[x,y:ℤ_n].  uiff((x mod n) (y mod n) ∈ ℤ;x y ∈ ℤ_n)


Proof




Definitions occuring in Statement :  int_mod: _n modulus: mod n nat_plus: + uiff: uiff(P;Q) uall: [x:A]. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a subtype_rel: A ⊆B int_seg: {i..j-} squash: T prop: true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q nat_plus: + int_mod: _n quotient: x,y:A//B[x; y] all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  modulus_wf_int_mod equal_wf squash_wf true_wf subtype_rel_self iff_weakening_equal int_mod_wf nat_plus_wf int-subtype-int_mod equal-wf-base-T int_subtype_base set_subtype_base less_than_wf eqmod_wf quotient-member-eq eqmod_equiv_rel modulus-equal-iff-eqmod
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut independent_pairFormation Error :equalityIsType1,  Error :universeIsType,  intEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality Error :lambdaEquality_alt,  setElimination rename Error :inhabitedIsType,  equalityTransitivity equalitySymmetry sqequalRule imageElimination universeEquality because_Cache natural_numberEquality imageMemberEquality baseClosed instantiate independent_isectElimination productElimination independent_functionElimination independent_pairEquality Error :isect_memberEquality_alt,  axiomEquality Error :isectIsTypeImplies,  pointwiseFunctionalityForEquality functionEquality pertypeElimination Error :lambdaFormation_alt,  baseApply closedConclusion Error :equalityIsType4,  dependent_functionElimination Error :productIsType

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[x,y:\mBbbZ{}\_n].    uiff((x  mod  n)  =  (y  mod  n);x  =  y)



Date html generated: 2019_06_20-PM-02_27_43
Last ObjectModification: 2018_10_15-PM-05_54_10

Theory : num_thy_1


Home Index