Nuprl Lemma : equal_int_mod_iff_modulus
∀[n:ℕ+]. ∀[x,y:ℤ_n].  uiff((x mod n) = (y mod n) ∈ ℤ;x = y ∈ ℤ_n)
Proof
Definitions occuring in Statement : 
int_mod: ℤ_n
, 
modulus: a mod n
, 
nat_plus: ℕ+
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
nat_plus: ℕ+
, 
int_mod: ℤ_n
, 
quotient: x,y:A//B[x; y]
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
modulus_wf_int_mod, 
equal_wf, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
int_mod_wf, 
nat_plus_wf, 
int-subtype-int_mod, 
equal-wf-base-T, 
int_subtype_base, 
set_subtype_base, 
less_than_wf, 
eqmod_wf, 
quotient-member-eq, 
eqmod_equiv_rel, 
modulus-equal-iff-eqmod
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
Error :equalityIsType1, 
Error :universeIsType, 
intEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
Error :lambdaEquality_alt, 
setElimination, 
rename, 
Error :inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
imageElimination, 
universeEquality, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
independent_pairEquality, 
Error :isect_memberEquality_alt, 
axiomEquality, 
Error :isectIsTypeImplies, 
pointwiseFunctionalityForEquality, 
functionEquality, 
pertypeElimination, 
Error :lambdaFormation_alt, 
baseApply, 
closedConclusion, 
Error :equalityIsType4, 
dependent_functionElimination, 
Error :productIsType
Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[x,y:\mBbbZ{}\_n].    uiff((x  mod  n)  =  (y  mod  n);x  =  y)
Date html generated:
2019_06_20-PM-02_27_43
Last ObjectModification:
2018_10_15-PM-05_54_10
Theory : num_thy_1
Home
Index