Step
*
of Lemma
exp-convex2
∀[a,b:ℤ]. ∀[c:ℕ]. ∀[n:ℕ+]. |a - b| ≤ c supposing (|a^n - b^n| ≤ c^n) ∧ (0 ≤ a
⇐⇒ 0 ≤ b)
BY
{ TACTIC:Auto }
1
1. a : ℤ
2. b : ℤ
3. c : ℕ
4. n : ℕ+
5. |a^n - b^n| ≤ c^n
6. (0 ≤ a)
⇒ (0 ≤ b)
7. (0 ≤ a)
⇐ 0 ≤ b
⊢ |a - b| ≤ c
Latex:
Latex:
\mforall{}[a,b:\mBbbZ{}]. \mforall{}[c:\mBbbN{}]. \mforall{}[n:\mBbbN{}\msupplus{}]. |a - b| \mleq{} c supposing (|a\^{}n - b\^{}n| \mleq{} c\^{}n) \mwedge{} (0 \mleq{} a \mLeftarrow{}{}\mRightarrow{} 0 \mleq{} b)
By
Latex:
TACTIC:Auto
Home
Index