Nuprl Lemma : exp-convex2
∀[a,b:ℤ]. ∀[c:ℕ]. ∀[n:ℕ+].  |a - b| ≤ c supposing (|a^n - b^n| ≤ c^n) ∧ (0 ≤ a 
⇐⇒ 0 ≤ b)
Proof
Definitions occuring in Statement : 
exp: i^n
, 
absval: |i|
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
subtract: n - m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
le: A ≤ B
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
prop: ℙ
, 
nat_plus: ℕ+
, 
ge: i ≥ j 
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
subtract: n - m
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
Lemmas referenced : 
le_witness_for_triv, 
istype-le, 
absval_wf, 
subtract_wf, 
exp_wf2, 
nat_plus_subtype_nat, 
nat_plus_wf, 
istype-nat, 
istype-int, 
decidable__le, 
le_wf, 
exp-convex, 
nat_plus_properties, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermMinus_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_minus_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
intformimplies_wf, 
int_formual_prop_imp_lemma, 
minus-one-mul, 
squash_wf, 
true_wf, 
absval_sym, 
subtype_rel_self, 
iff_weakening_equal, 
minus-minus, 
minus-add, 
eq_int_wf, 
modulus_wf_int_mod, 
istype-less_than, 
subtype_rel_set, 
int-subtype-int_mod, 
eqtt_to_assert, 
assert_of_eq_int, 
int_mod_wf, 
less_than_wf, 
eqff_to_assert, 
set_subtype_base, 
int_subtype_base, 
bool_subtype_base, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
assert-bnot, 
neg_assert_of_eq_int, 
equal_wf, 
istype-universe, 
mul-associates, 
one-mul, 
absval-minus, 
exp-minus
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
extract_by_obid, 
isectElimination, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
independent_isectElimination, 
sqequalRule, 
Error :productIsType, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
Error :lambdaEquality_alt, 
setElimination, 
rename, 
Error :inhabitedIsType, 
Error :functionIsType, 
natural_numberEquality, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
Error :universeIsType, 
dependent_functionElimination, 
unionElimination, 
dependent_set_memberEquality, 
independent_functionElimination, 
Error :dependent_set_memberEquality_alt, 
minusEquality, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
int_eqEquality, 
voidElimination, 
independent_pairFormation, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
instantiate, 
universeEquality, 
hyp_replacement, 
intEquality, 
closedConclusion, 
Error :lambdaFormation_alt, 
equalityElimination, 
Error :equalityIsType4, 
baseApply, 
promote_hyp, 
cumulativity, 
addEquality, 
multiplyEquality, 
Error :equalityIsType1
Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[c:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    |a  -  b|  \mleq{}  c  supposing  (|a\^{}n  -  b\^{}n|  \mleq{}  c\^{}n)  \mwedge{}  (0  \mleq{}  a  \mLeftarrow{}{}\mRightarrow{}  0  \mleq{}  b)
Date html generated:
2019_06_20-PM-02_31_09
Last ObjectModification:
2018_10_17-PM-00_25_14
Theory : num_thy_1
Home
Index