Nuprl Lemma : exp-convex2

[a,b:ℤ]. ∀[c:ℕ]. ∀[n:ℕ+].  |a b| ≤ supposing (|a^n b^n| ≤ c^n) ∧ (0 ≤ ⇐⇒ 0 ≤ b)


Proof




Definitions occuring in Statement :  exp: i^n absval: |i| nat_plus: + nat: uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B iff: ⇐⇒ Q and: P ∧ Q subtract: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q iff: ⇐⇒ Q le: A ≤ B subtype_rel: A ⊆B nat: implies:  Q rev_implies:  Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q prop: nat_plus: + ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top subtract: m squash: T true: True guard: {T} less_than: a < b less_than': less_than'(a;b) so_lambda: λ2x.t[x] so_apply: x[s] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b
Lemmas referenced :  le_witness_for_triv istype-le absval_wf subtract_wf exp_wf2 nat_plus_subtype_nat nat_plus_wf istype-nat istype-int decidable__le le_wf exp-convex nat_plus_properties nat_properties full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermMinus_wf itermVar_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_minus_lemma int_term_value_var_lemma int_formula_prop_wf intformimplies_wf int_formual_prop_imp_lemma minus-one-mul squash_wf true_wf absval_sym subtype_rel_self iff_weakening_equal minus-minus minus-add eq_int_wf modulus_wf_int_mod istype-less_than subtype_rel_set int-subtype-int_mod eqtt_to_assert assert_of_eq_int int_mod_wf less_than_wf eqff_to_assert set_subtype_base int_subtype_base bool_subtype_base bool_cases_sqequal subtype_base_sq bool_wf assert-bnot neg_assert_of_eq_int equal_wf istype-universe mul-associates one-mul absval-minus exp-minus
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalHypSubstitution productElimination thin extract_by_obid isectElimination equalityTransitivity hypothesis equalitySymmetry independent_isectElimination sqequalRule Error :productIsType,  hypothesisEquality applyEquality because_Cache Error :lambdaEquality_alt,  setElimination rename Error :inhabitedIsType,  Error :functionIsType,  natural_numberEquality Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  Error :universeIsType,  dependent_functionElimination unionElimination dependent_set_memberEquality independent_functionElimination Error :dependent_set_memberEquality_alt,  minusEquality approximateComputation Error :dependent_pairFormation_alt,  int_eqEquality voidElimination independent_pairFormation imageElimination imageMemberEquality baseClosed instantiate universeEquality hyp_replacement intEquality closedConclusion Error :lambdaFormation_alt,  equalityElimination Error :equalityIsType4,  baseApply promote_hyp cumulativity addEquality multiplyEquality Error :equalityIsType1

Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[c:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    |a  -  b|  \mleq{}  c  supposing  (|a\^{}n  -  b\^{}n|  \mleq{}  c\^{}n)  \mwedge{}  (0  \mleq{}  a  \mLeftarrow{}{}\mRightarrow{}  0  \mleq{}  b)



Date html generated: 2019_06_20-PM-02_31_09
Last ObjectModification: 2018_10_17-PM-00_25_14

Theory : num_thy_1


Home Index