Nuprl Lemma : exp-convex

[a,b,c:ℕ]. ∀[n:ℕ+].  |a b| ≤ supposing |a^n b^n| ≤ c^n


Proof




Definitions occuring in Statement :  exp: i^n absval: |i| nat_plus: + nat: uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B subtract: m
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat_plus: + implies:  Q uimplies: supposing a le: A ≤ B and: P ∧ Q not: ¬A false: False nat: subtype_rel: A ⊆B prop: ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top so_lambda: λ2x.t[x] so_apply: x[s] true: True less_than': less_than'(a;b) iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m squash: T guard: {T} bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b less_than: a < b
Lemmas referenced :  nat_plus_properties less_than'_wf absval_wf subtract_wf le_wf exp_wf2 nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf isect_wf primrec-wf-nat-plus nat_plus_subtype_nat nat_plus_wf nat_wf false_wf decidable__lt not-lt-2 less-iff-le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel less_than_wf add-subtract-cancel squash_wf true_wf exp1 iff_weakening_equal exp_step multiply-is-int-iff absval-diff-product-bound exp_wf4 exp_preserves_le absval-diff-symmetry subtype_base_sq int_subtype_base equal_wf imax_unfold le_int_wf bool_wf eqtt_to_assert assert_of_le_int eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot imin_unfold exp_preserves_lt set_subtype_base itermMultiply_wf int_term_value_mul_lemma mul_preserves_lt less_than_transitivity2 mul_preserves_le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation rename extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination sqequalRule productElimination independent_pairEquality lambdaEquality dependent_functionElimination voidElimination because_Cache applyEquality axiomEquality equalityTransitivity equalitySymmetry dependent_set_memberEquality addEquality natural_numberEquality unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidEquality independent_pairFormation computeAll cumulativity universeEquality isectEquality independent_functionElimination minusEquality addLevel imageElimination imageMemberEquality baseClosed pointwiseFunctionality promote_hyp baseApply closedConclusion multiplyEquality instantiate equalityElimination applyLambdaEquality

Latex:
\mforall{}[a,b,c:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    |a  -  b|  \mleq{}  c  supposing  |a\^{}n  -  b\^{}n|  \mleq{}  c\^{}n



Date html generated: 2018_05_21-PM-01_05_39
Last ObjectModification: 2018_01_28-PM-02_01_56

Theory : num_thy_1


Home Index