Nuprl Lemma : exp_preserves_lt

[n:ℕ+]. ∀[x,y:ℕ].  x^n < y^n supposing x < y


Proof




Definitions occuring in Statement :  exp: i^n nat_plus: + nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a squash: T prop: nat: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A all: x:A. B[x] nat_plus: + ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) subtract: m sq_type: SQType(T) less_than: a < b
Lemmas referenced :  int_term_value_mul_lemma itermMultiply_wf add-subtract-cancel minus-zero not-equal-2 mul_preserves_lt exp_wf_nat_plus le_weakening less_than_transitivity2 mul_bounds_1b add-swap zero-mul int_subtype_base subtype_base_sq decidable__equal_int exp_step le-add-cancel add-zero add-associates add_functionality_wrt_le add-commutes minus-one-mul-top zero-add minus-one-mul minus-add condition-implies-le less-iff-le not-lt-2 decidable__lt nat_plus_subtype_nat primrec-wf-nat-plus nat_plus_wf isect_wf uall_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties nat_plus_properties nat_wf le_wf false_wf exp_wf2 member-less_than iff_weakening_equal exp1 true_wf squash_wf less_than_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination lemma_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry intEquality setElimination rename natural_numberEquality sqequalRule imageMemberEquality baseClosed universeEquality independent_isectElimination productElimination independent_functionElimination isect_memberEquality dependent_set_memberEquality independent_pairFormation lambdaFormation because_Cache addEquality dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality voidElimination voidEquality computeAll minusEquality instantiate cumulativity multiplyEquality

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[x,y:\mBbbN{}].    x\^{}n  <  y\^{}n  supposing  x  <  y



Date html generated: 2016_05_14-PM-04_26_36
Last ObjectModification: 2016_01_14-PM-11_37_44

Theory : num_thy_1


Home Index