Nuprl Lemma : absval-diff-product-bound

u,v,x,y:ℕ.  ((|u v| |x y|) ≤ |(imax(u;v) imax(x;y)) imin(u;v) imin(x;y)|)


Proof




Definitions occuring in Statement :  imin: imin(a;b) imax: imax(a;b) absval: |i| nat: le: A ≤ B all: x:A. B[x] multiply: m subtract: m
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat: uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} squash: T prop: guard: {T} lelt: i ≤ j < k and: P ∧ Q ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) le: A ≤ B less_than': less_than'(a;b) subtract: m absval: |i| bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  int_seg_wf nat_wf subtype_base_sq set_subtype_base le_wf int_subtype_base absval-non-neg subtract_wf equal_wf squash_wf true_wf absval_pos int_seg_properties nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf iff_weakening_equal mul_preserves_le int_seg_subtype_nat false_wf itermMultiply_wf int_term_value_mul_lemma lelt_wf mul-distributes mul-distributes-right add-associates minus-one-mul mul-associates mul-swap one-mul add-swap itermAdd_wf int_term_value_add_lemma decidable__equal_int absval_wf imax_wf imin_wf add-mul-special zero-mul le_int_wf bool_wf eqtt_to_assert assert_of_le_int eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot decidable__lt intformeq_wf int_formula_prop_eq_lemma le_weakening absval-diff-symmetry imax_unfold imin_unfold le_functionality
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis instantiate cumulativity independent_isectElimination sqequalRule intEquality lambdaEquality dependent_set_memberEquality applyEquality imageElimination equalityTransitivity equalitySymmetry universeEquality because_Cache productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll imageMemberEquality baseClosed independent_functionElimination sqequalIntensionalEquality multiplyEquality baseApply closedConclusion minusEquality addEquality applyLambdaEquality equalityElimination promote_hyp

Latex:
\mforall{}u,v,x,y:\mBbbN{}.    ((|u  -  v|  *  |x  -  y|)  \mleq{}  |(imax(u;v)  *  imax(x;y))  -  imin(u;v)  *  imin(x;y)|)



Date html generated: 2017_04_14-AM-09_13_55
Last ObjectModification: 2017_02_27-PM-03_51_48

Theory : int_2


Home Index