Nuprl Lemma : absval-minus

[x:ℤ]. (|-x| |x| ∈ ℤ)


Proof




Definitions occuring in Statement :  absval: |i| uall: [x:A]. B[x] minus: -n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False prop: bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B
Lemmas referenced :  absval_unfold2 lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base iff_transitivity assert_wf bnot_wf not_wf iff_weakening_uiff assert_of_bnot minus-minus add_functionality_wrt_lt le_reflexive less_than_transitivity2 le_weakening2 less_than_irreflexivity minus-one-mul zero-add add-commutes add-mul-special zero-mul not-lt-2 int_subtype_base minus-zero add_functionality_wrt_le le_antisymmetry
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin minusEquality hypothesisEquality hypothesis natural_numberEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination because_Cache lessCases sqequalAxiom isect_memberEquality independent_pairFormation voidElimination voidEquality imageMemberEquality baseClosed imageElimination independent_functionElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate impliesFunctionality cumulativity multiplyEquality intEquality

Latex:
\mforall{}[x:\mBbbZ{}].  (|-x|  =  |x|)



Date html generated: 2017_04_14-AM-07_16_54
Last ObjectModification: 2017_02_27-PM-02_51_41

Theory : arithmetic


Home Index