Nuprl Lemma : exp-non-neg
∀[n,x:ℕ].  (0 ≤ x^n)
Proof
Definitions occuring in Statement : 
exp: i^n
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
le: A ≤ B
, 
and: P ∧ Q
, 
uimplies: b supposing a
Lemmas referenced : 
zero-le-nat, 
exp_wf4, 
le_witness_for_triv, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
Error :inhabitedIsType, 
sqequalRule, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies
Latex:
\mforall{}[n,x:\mBbbN{}].    (0  \mleq{}  x\^{}n)
Date html generated:
2019_06_20-PM-02_26_35
Last ObjectModification:
2019_03_19-AM-11_50_29
Theory : num_thy_1
Home
Index