Nuprl Lemma : exp-non-neg

[n,x:ℕ].  (0 ≤ x^n)


Proof




Definitions occuring in Statement :  exp: i^n nat: uall: [x:A]. B[x] le: A ≤ B natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T le: A ≤ B and: P ∧ Q uimplies: supposing a
Lemmas referenced :  zero-le-nat exp_wf4 le_witness_for_triv istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination equalityTransitivity equalitySymmetry independent_isectElimination Error :inhabitedIsType,  sqequalRule Error :isect_memberEquality_alt,  Error :isectIsTypeImplies

Latex:
\mforall{}[n,x:\mBbbN{}].    (0  \mleq{}  x\^{}n)



Date html generated: 2019_06_20-PM-02_26_35
Last ObjectModification: 2019_03_19-AM-11_50_29

Theory : num_thy_1


Home Index