Nuprl Lemma : gcd-unique-nat

n,m,g:ℕ.  ((((g n) ∧ (g m)) ∧ (∀v:ℤ((v n)  (v m)  (v g))))  (g gcd(n;m) ∈ ℤ))


Proof




Definitions occuring in Statement :  divides: a gcd: gcd(a;b) nat: all: x:A. B[x] implies:  Q and: P ∧ Q int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T nat: uall: [x:A]. B[x] prop: iff: ⇐⇒ Q so_lambda: λ2x.t[x] so_apply: x[s] gcd_p: GCD(a;b;y) cand: c∧ B guard: {T}
Lemmas referenced :  assoced_nelim gcd_wf gcd-non-neg le_wf gcd_unique gcd_sat_pred and_wf divides_wf all_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution productElimination thin lemma_by_obid dependent_functionElimination hypothesisEquality dependent_set_memberEquality setElimination rename hypothesis isectElimination natural_numberEquality independent_functionElimination because_Cache intEquality sqequalRule lambdaEquality functionEquality independent_pairFormation

Latex:
\mforall{}n,m,g:\mBbbN{}.    ((((g  |  n)  \mwedge{}  (g  |  m))  \mwedge{}  (\mforall{}v:\mBbbZ{}.  ((v  |  n)  {}\mRightarrow{}  (v  |  m)  {}\mRightarrow{}  (v  |  g))))  {}\mRightarrow{}  (g  =  gcd(n;m)))



Date html generated: 2016_05_14-PM-09_25_24
Last ObjectModification: 2015_12_26-PM-08_03_03

Theory : num_thy_1


Home Index