Nuprl Lemma : gcd_assoc

a,b,c:ℤ.  (gcd(gcd(a;b);c) gcd(a;gcd(b;c)))


Proof




Definitions occuring in Statement :  assoced: b gcd: gcd(a;b) all: x:A. B[x] int:
Definitions unfolded in proof :  member: t ∈ T all: x:A. B[x] uall: [x:A]. B[x] prop: implies:  Q and: P ∧ Q assoced: b
Lemmas referenced :  istype-int gcd_p_wf gcd_sat_pred gcd_wf gcd_p_sym gcd_of_triple
Rules used in proof :  hypothesis extract_by_obid introduction cut hypothesisEquality Error :inhabitedIsType,  Error :lambdaFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_functionElimination equalityTransitivity Error :equalityIsType1,  isectElimination applyLambdaEquality hyp_replacement equalitySymmetry thin dependent_functionElimination sqequalHypSubstitution because_Cache productElimination independent_pairFormation

Latex:
\mforall{}a,b,c:\mBbbZ{}.    (gcd(gcd(a;b);c)  \msim{}  gcd(a;gcd(b;c)))



Date html generated: 2019_06_20-PM-02_22_33
Last ObjectModification: 2019_01_15-PM-03_19_15

Theory : num_thy_1


Home Index