Nuprl Lemma : gcd_assoc
∀a,b,c:ℤ.  (gcd(gcd(a;b);c) ~ gcd(a;gcd(b;c)))
Proof
Definitions occuring in Statement : 
assoced: a ~ b
, 
gcd: gcd(a;b)
, 
all: ∀x:A. B[x]
, 
int: ℤ
Definitions unfolded in proof : 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
assoced: a ~ b
Lemmas referenced : 
istype-int, 
gcd_p_wf, 
gcd_sat_pred, 
gcd_wf, 
gcd_p_sym, 
gcd_of_triple
Rules used in proof : 
hypothesis, 
extract_by_obid, 
introduction, 
cut, 
hypothesisEquality, 
Error :inhabitedIsType, 
Error :lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_functionElimination, 
equalityTransitivity, 
Error :equalityIsType1, 
isectElimination, 
applyLambdaEquality, 
hyp_replacement, 
equalitySymmetry, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
because_Cache, 
productElimination, 
independent_pairFormation
Latex:
\mforall{}a,b,c:\mBbbZ{}.    (gcd(gcd(a;b);c)  \msim{}  gcd(a;gcd(b;c)))
Date html generated:
2019_06_20-PM-02_22_33
Last ObjectModification:
2019_01_15-PM-03_19_15
Theory : num_thy_1
Home
Index