Step
*
1
1
of Lemma
lcm-positive
1. a : ℕ+
2. a ≠ 0
3. b : ℕ+
4. 0 < gcd(a;b)
5. a@0 : ℤ
6. b@0 : ℤ
7. CoPrime(a@0,b@0)
8. a = (gcd(a;b) * a@0) ∈ ℤ
9. b = (gcd(a;b) * b@0) ∈ ℤ
⊢ 0 < (a * b) ÷ gcd(a;b)
BY
{ ((RepeatFor 2 (MoveToConcl (-1)) THEN MoveToConcl 4) THEN (GenConcl ⌜gcd(a;b) = g ∈ ℤ⌝⋅ THENA Auto) THEN All Thin) }
1
1. a : ℕ+
2. b : ℕ+
3. a@0 : ℤ
4. b@0 : ℤ
5. g : ℤ
⊢ 0 < g 
⇒ (a = (g * a@0) ∈ ℤ) 
⇒ (b = (g * b@0) ∈ ℤ) 
⇒ 0 < (a * b) ÷ g
Latex:
Latex:
1.  a  :  \mBbbN{}\msupplus{}
2.  a  \mneq{}  0
3.  b  :  \mBbbN{}\msupplus{}
4.  0  <  gcd(a;b)
5.  a@0  :  \mBbbZ{}
6.  b@0  :  \mBbbZ{}
7.  CoPrime(a@0,b@0)
8.  a  =  (gcd(a;b)  *  a@0)
9.  b  =  (gcd(a;b)  *  b@0)
\mvdash{}  0  <  (a  *  b)  \mdiv{}  gcd(a;b)
By
Latex:
((RepeatFor  2  (MoveToConcl  (-1))  THEN  MoveToConcl  4)
  THEN  (GenConcl  \mkleeneopen{}gcd(a;b)  =  g\mkleeneclose{}\mcdot{}  THENA  Auto)
  THEN  All  Thin)
Home
Index