Step
*
2
1
2
1
of Lemma
polymorphic-choice-int
.....assertion.....
1. f : ⋂A:Type. (A ⟶ A ⟶ A)
2. ∀x,y:Base. (↓((f x y) = x ∈ Base) ∨ ((f x y) = y ∈ Base))
3. f ∈ ℤ ⟶ ℤ ⟶ ℤ
4. (f 0 1) = 0 ∈ ℤ
5. x : ℤ
6. y : ℤ
7. (f x y) = y ∈ Base
8. ¬(x = y ∈ ℤ)
9. n : ℤ
10. m : ℤ
11. ¬(n = m ∈ ℤ)
12. (f n m) = n ∈ ℤ
13. ¬(x = m ∈ ℤ)
14. ¬(y = n ∈ ℤ)
⊢ ∃T:Type. ((x = n ∈ T) ∧ (y = m ∈ T) ∧ (¬(x = y ∈ T)))
BY
{ (BLemma `exists-type-equating-ints` THEN Auto) }
Latex:
Latex:
.....assertion.....
1. f : \mcap{}A:Type. (A {}\mrightarrow{} A {}\mrightarrow{} A)
2. \mforall{}x,y:Base. (\mdownarrow{}((f x y) = x) \mvee{} ((f x y) = y))
3. f \mmember{} \mBbbZ{} {}\mrightarrow{} \mBbbZ{} {}\mrightarrow{} \mBbbZ{}
4. (f 0 1) = 0
5. x : \mBbbZ{}
6. y : \mBbbZ{}
7. (f x y) = y
8. \mneg{}(x = y)
9. n : \mBbbZ{}
10. m : \mBbbZ{}
11. \mneg{}(n = m)
12. (f n m) = n
13. \mneg{}(x = m)
14. \mneg{}(y = n)
\mvdash{} \mexists{}T:Type. ((x = n) \mwedge{} (y = m) \mwedge{} (\mneg{}(x = y)))
By
Latex:
(BLemma `exists-type-equating-ints` THEN Auto)
Home
Index