Step
*
2
2
of Lemma
polymorphic-choice-int
1. f : ⋂A:Type. (A ⟶ A ⟶ A)
2. ∀x,y:Base. (↓((f x y) = x ∈ Base) ∨ ((f x y) = y ∈ Base))
3. f ∈ ℤ ⟶ ℤ ⟶ ℤ
4. ¬((f 0 1) = 0 ∈ ℤ)
5. x : ℤ
6. y : ℤ
7. (f 0 1) = 1 ∈ Base
8. (f x y) = x ∈ Base
9. ¬(x = y ∈ ℤ)
⊢ (f x y) = y ∈ ℤ
BY
{ TACTIC:Assert ⌜∃n,m:ℤ. ((¬(n = m ∈ ℤ)) ∧ ((f n m) = m ∈ ℤ) ∧ (¬(x = m ∈ ℤ)) ∧ (¬(y = n ∈ ℤ)))⌝⋅ }
1
.....assertion.....
1. f : ⋂A:Type. (A ⟶ A ⟶ A)
2. ∀x,y:Base. (↓((f x y) = x ∈ Base) ∨ ((f x y) = y ∈ Base))
3. f ∈ ℤ ⟶ ℤ ⟶ ℤ
4. ¬((f 0 1) = 0 ∈ ℤ)
5. x : ℤ
6. y : ℤ
7. (f 0 1) = 1 ∈ Base
8. (f x y) = x ∈ Base
9. ¬(x = y ∈ ℤ)
⊢ ∃n,m:ℤ. ((¬(n = m ∈ ℤ)) ∧ ((f n m) = m ∈ ℤ) ∧ (¬(x = m ∈ ℤ)) ∧ (¬(y = n ∈ ℤ)))
2
1. f : ⋂A:Type. (A ⟶ A ⟶ A)
2. ∀x,y:Base. (↓((f x y) = x ∈ Base) ∨ ((f x y) = y ∈ Base))
3. f ∈ ℤ ⟶ ℤ ⟶ ℤ
4. ¬((f 0 1) = 0 ∈ ℤ)
5. x : ℤ
6. y : ℤ
7. (f 0 1) = 1 ∈ Base
8. (f x y) = x ∈ Base
9. ¬(x = y ∈ ℤ)
10. ∃n,m:ℤ. ((¬(n = m ∈ ℤ)) ∧ ((f n m) = m ∈ ℤ) ∧ (¬(x = m ∈ ℤ)) ∧ (¬(y = n ∈ ℤ)))
⊢ (f x y) = y ∈ ℤ
Latex:
Latex:
1. f : \mcap{}A:Type. (A {}\mrightarrow{} A {}\mrightarrow{} A)
2. \mforall{}x,y:Base. (\mdownarrow{}((f x y) = x) \mvee{} ((f x y) = y))
3. f \mmember{} \mBbbZ{} {}\mrightarrow{} \mBbbZ{} {}\mrightarrow{} \mBbbZ{}
4. \mneg{}((f 0 1) = 0)
5. x : \mBbbZ{}
6. y : \mBbbZ{}
7. (f 0 1) = 1
8. (f x y) = x
9. \mneg{}(x = y)
\mvdash{} (f x y) = y
By
Latex:
TACTIC:Assert \mkleeneopen{}\mexists{}n,m:\mBbbZ{}. ((\mneg{}(n = m)) \mwedge{} ((f n m) = m) \mwedge{} (\mneg{}(x = m)) \mwedge{} (\mneg{}(y = n)))\mkleeneclose{}\mcdot{}
Home
Index