Step
*
1
2
of Lemma
polymorphic-id-unique-sq
1. f : Base
2. f ∈ ⋂T:Type. (T ⟶ T)
3. ⋂x:Base. ⋂z:(x)↓. if x is an integer then True else f x ≤ ⊥
⊢ f ~ λx.x
BY
{ (Fold `uall` (-1)
THEN (InstHyp [⌜Ax⌝;⌜Ax⌝] (-1)⋅ THENA Auto)
THEN Reduce (-1)
THEN Fold `it` (-1)
THEN (Assert f ⋅ ∈ Unit BY
(Assert ⌜f ∈ Unit ⟶ Unit⌝⋅ THEN Auto))
THEN (Subst' f ⋅ ~ ⋅ -2 THENA Auto)
THEN (Assert ⌜False⌝⋅ THEN Auto THEN ThinVar `f')
THEN (Assert ⋅ ~ ⊥ BY
(SqequalSqle THEN Auto))
THEN ((Assert (⋅)↓ BY Auto) THEN HypSubst' (-2) (-1))
THEN BotDiv) }
Latex:
Latex:
1. f : Base
2. f \mmember{} \mcap{}T:Type. (T {}\mrightarrow{} T)
3. \mcap{}x:Base. \mcap{}z:(x)\mdownarrow{}. if x is an integer then True else f x \mleq{} \mbot{}
\mvdash{} f \msim{} \mlambda{}x.x
By
Latex:
(Fold `uall` (-1)
THEN (InstHyp [\mkleeneopen{}Ax\mkleeneclose{};\mkleeneopen{}Ax\mkleeneclose{}] (-1)\mcdot{} THENA Auto)
THEN Reduce (-1)
THEN Fold `it` (-1)
THEN (Assert f \mcdot{} \mmember{} Unit BY
(Assert \mkleeneopen{}f \mmember{} Unit {}\mrightarrow{} Unit\mkleeneclose{}\mcdot{} THEN Auto))
THEN (Subst' f \mcdot{} \msim{} \mcdot{} -2 THENA Auto)
THEN (Assert \mkleeneopen{}False\mkleeneclose{}\mcdot{} THEN Auto THEN ThinVar `f')
THEN (Assert \mcdot{} \msim{} \mbot{} BY
(SqequalSqle THEN Auto))
THEN ((Assert (\mcdot{})\mdownarrow{} BY Auto) THEN HypSubst' (-2) (-1))
THEN BotDiv)
Home
Index