Step
*
1
of Lemma
product-eq-0-mod-prime
1. p : ℤ
2. a : ℤ
3. b : ℤ
4. prime(p)
5. c : ℤ
6. ((a * b) - 0) = (p * c) ∈ ℤ
7. p | (a * b)
⊢ (a ≡ 0 mod p) ∨ (b ≡ 0 mod p)
BY
{ ((Assert (p | a) ∨ (p | b) BY EAuto 1) THEN ParallelLast THEN D -1 THEN D 0 With ⌜c1⌝ THEN Auto) }
Latex:
Latex:
1. p : \mBbbZ{}
2. a : \mBbbZ{}
3. b : \mBbbZ{}
4. prime(p)
5. c : \mBbbZ{}
6. ((a * b) - 0) = (p * c)
7. p | (a * b)
\mvdash{} (a \mequiv{} 0 mod p) \mvee{} (b \mequiv{} 0 mod p)
By
Latex:
((Assert (p | a) \mvee{} (p | b) BY EAuto 1) THEN ParallelLast THEN D -1 THEN D 0 With \mkleeneopen{}c1\mkleeneclose{} THEN Auto)
Home
Index